These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28534621)

  • 1. Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects.
    Hoener BS; Zhang H; Heiderscheit TS; Kirchner SR; De Silva Indrasekara AS; Baiyasi R; Cai Y; Nordlander P; Link S; Landes CF; Chang WS
    J Phys Chem Lett; 2017 Jun; 8(12):2681-2688. PubMed ID: 28534621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticles: past, present, and future.
    Sardar R; Funston AM; Mulvaney P; Murray RW
    Langmuir; 2009 Dec; 25(24):13840-51. PubMed ID: 19572538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemistry on a localized surface plasmon resonance sensor.
    Sannomiya T; Dermutz H; Hafner C; Vörös J; Dahlin AB
    Langmuir; 2010 May; 26(10):7619-26. PubMed ID: 20020724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Plasmonic Monitoring of Single Gold Amalgam Nanoalloy Electrochemical Formation and Stripping.
    Wang JG; Fossey JS; Li M; Xie T; Long YT
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8305-14. PubMed ID: 26942394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon Energy Transfer Driven by Electrochemical Tuning of Methylene Blue on Single Gold Nanorods.
    Oh H; Searles EK; Chatterjee S; Jia Z; Lee SA; Link S; Landes CF
    ACS Nano; 2023 Sep; 17(18):18280-18289. PubMed ID: 37672688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of ozone and plasmonic properties of gold hydrosol: the effect of the nanoparticle size.
    Ershov BG; Abkhalimov EV; Roldughin VI; Rudoy VM; Dement'eva OV; Solovov RD
    Phys Chem Chem Phys; 2015 Jul; 17(28):18431-6. PubMed ID: 26106813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties.
    Byers CP; Zhang H; Swearer DF; Yorulmaz M; Hoener BS; Huang D; Hoggard A; Chang WS; Mulvaney P; Ringe E; Halas NJ; Nordlander P; Link S; Landes CF
    Sci Adv; 2015 Dec; 1(11):e1500988. PubMed ID: 26665175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon Length: A Universal Parameter to Describe Size Effects in Gold Nanoparticles.
    Ringe E; Langille MR; Sohn K; Zhang J; Huang J; Mirkin CA; Van Duyne RP; Marks LD
    J Phys Chem Lett; 2012 Jun; 3(11):1479-83. PubMed ID: 26285624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Particle Spectroelectrochemistry: Electrochemical Approaches for Tuning Chemical Interfaces and Plasmon Damping in Single Gold Nanorods.
    Ramasamy M; Ha JW
    J Phys Chem Lett; 2023 Jun; 14(25):5768-5775. PubMed ID: 37326616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersive Plasmon Damping in Single Gold Nanorods by Platinum Adsorbates.
    Xu P; Lu X; Han S; Ou W; Li Y; Chen S; Xue J; Ding Y; Ni W
    Small; 2016 Sep; 12(36):5081-5089. PubMed ID: 27159087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.
    Fang Y; Wang H; Yu H; Liu X; Wang W; Chen HY; Tao NJ
    Acc Chem Res; 2016 Nov; 49(11):2614-2624. PubMed ID: 27662069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction to "Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects".
    Hoener BS; Zhang H; Heiderscheit TS; Kirchner SR; De Silva Indrasekara AS; Baiyasi R; Cai Y; Nordlander P; Link S; Landes CF; Chang WS
    J Phys Chem Lett; 2017 Aug; 8(16):3874. PubMed ID: 28782359
    [No Abstract]   [Full Text] [Related]  

  • 15. Toward Smaller Aqueous-Phase Plasmonic Gold Nanoparticles: High-Stability Thiolate-Protected ∼4.5 nm Cores.
    Hoque MM; Mayer KM; Ponce A; Alvarez MM; Whetten RL
    Langmuir; 2019 Aug; 35(32):10610-10617. PubMed ID: 31299160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles.
    Wang C; Nie XG; Shi Y; Zhou Y; Xu JJ; Xia XH; Chen HY
    ACS Nano; 2017 Jun; 11(6):5897-5905. PubMed ID: 28494145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance properties of single elongated nano-objects: gold nanobipyramids and nanorods.
    Lombardi A; Loumaigne M; Crut A; Maioli P; Del Fatti N; Vallée F; Spuch-Calvar M; Burgin J; Majimel J; Tréguer-Delapierre M
    Langmuir; 2012 Jun; 28(24):9027-33. PubMed ID: 22369067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods.
    Jing C; Rawson FJ; Zhou H; Shi X; Li WH; Li DW; Long YT
    Anal Chem; 2014 Jun; 86(11):5513-8. PubMed ID: 24766541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical charging of single gold nanorods.
    Novo C; Funston AM; Gooding AK; Mulvaney P
    J Am Chem Soc; 2009 Oct; 131(41):14664-6. PubMed ID: 19824726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.