These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28534802)

  • 1. Organ Location Determination and Contour Sparse Representation for Multiorgan Segmentation.
    Li S; Jiang H; Yao YD; Yang B
    IEEE J Biomed Health Inform; 2018 May; 22(3):852-861. PubMed ID: 28534802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Registration-Based Organ Positioning and Joint Segmentation Method for Liver and Tumor Segmentation.
    Jiang H; Li S; Li S
    Biomed Res Int; 2018; 2018():8536854. PubMed ID: 30345308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discriminative dictionary learning for abdominal multi-organ segmentation.
    Tong T; Wolz R; Wang Z; Gao Q; Misawa K; Fujiwara M; Mori K; Hajnal JV; Rueckert D
    Med Image Anal; 2015 Jul; 23(1):92-104. PubMed ID: 25988490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A segmentation framework for abdominal organs from CT scans.
    Campadelli P; Casiraghi E; Pratissoli S
    Artif Intell Med; 2010 Sep; 50(1):3-11. PubMed ID: 20542673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated abdominal multi-organ segmentation with subject-specific atlas generation.
    Wolz R; Chu C; Misawa K; Fujiwara M; Mori K; Rueckert D
    IEEE Trans Med Imaging; 2013 Sep; 32(9):1723-30. PubMed ID: 23744670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.
    Li D; Liu L; Chen J; Li H; Yin Y; Ibragimov B; Xing L
    Phys Med Biol; 2017 Jan; 62(1):272-288. PubMed ID: 27991439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automated explainable abdominal CT contrast media phase classification using organ segmentation and machine learning.
    Salimi Y; Mansouri Z; Hajianfar G; Sanaat A; Shiri I; Zaidi H
    Med Phys; 2024 Jun; 51(6):4095-4104. PubMed ID: 38629779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal organ volume assessment from abdominal CT.
    Geraghty EM; Boone JM; McGahan JP; Jain K
    Abdom Imaging; 2004; 29(4):482-90. PubMed ID: 15024516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A curvelet-based morphological segmentation of abdominal CT images.
    Sakalli M; Pham TD; Lam KM; Yan H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5542-5. PubMed ID: 25571250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of image fusion of normal upper abdominal organs visualized with PET/CT.
    Nakamoto Y; Tatsumi M; Cohade C; Osman M; Marshall LT; Wahl RL
    Eur J Nucl Med Mol Imaging; 2003 Apr; 30(4):597-602. PubMed ID: 12548443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liver vessel segmentation based on extreme learning machine.
    Zeng YZ; Zhao YQ; Liao M; Zou BJ; Wang XF; Wang W
    Phys Med; 2016 May; 32(5):709-16. PubMed ID: 27132031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation.
    Lee H; Hong H; Kim J; Jung DC
    Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm.
    Xia KJ; Yin HS; Zhang YD
    J Med Syst; 2018 Nov; 43(1):2. PubMed ID: 30456668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast segmentation of kidney components using random forests and ferns.
    Jin C; Shi F; Xiang D; Zhang L; Chen X
    Med Phys; 2017 Dec; 44(12):6353-6363. PubMed ID: 28940607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kidney segmentation in CT sequences using graph cuts based active contours model and contextual continuity.
    Zhang P; Liang Y; Chang S; Fan H
    Med Phys; 2013 Aug; 40(8):081905. PubMed ID: 23927319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Multiorgan Segmentation via Multiscale Registration and Graph Cut.
    Kechichian R; Valette S; Desvignes M
    IEEE Trans Med Imaging; 2018 Dec; 37(12):2739-2749. PubMed ID: 29994393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation of liver and spleen based on computational anatomy models.
    Dong C; Chen YW; Foruzan AH; Lin L; Han XH; Tateyama T; Wu X; Xu G; Jiang H
    Comput Biol Med; 2015 Dec; 67():146-60. PubMed ID: 26551453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kidney segmentation in CT sequences using SKFCM and improved GrowCut algorithm.
    Song H; Kang W; Zhang Q; Wang S
    BMC Syst Biol; 2015; 9 Suppl 5(Suppl 5):S5. PubMed ID: 26356850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse deep belief network coupled with extended local fuzzy active contour model-based liver cancer segmentation from abdomen CT images.
    Dickson AJ; Linsely JA; Daniel VAA; Rahul K
    Med Biol Eng Comput; 2024 May; 62(5):1361-1374. PubMed ID: 38189903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.