These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 28534904)

  • 21. Three-Dimensional Porous Copper-Graphene Heterostructures with Durability and High Heat Dissipation Performance.
    Rho H; Lee S; Bae S; Kim TW; Lee DS; Lee HJ; Hwang JY; Jeong T; Kim S; Ha JS; Lee SH
    Sci Rep; 2015 Aug; 5():12710. PubMed ID: 26234425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remarkable Effects of an Electrodeposited Copper Skin on the Strength and the Electrical and Thermal Conductivities of Reduced Graphene Oxide-Printed Scaffolds.
    Moyano JJ; Garcia I; de Damborenea J; Pérez-Coll D; Belmonte M; Miranzo P; Osendi MI
    ACS Appl Mater Interfaces; 2020 May; 12(21):24209-24217. PubMed ID: 32368891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene-Carbon-Metal Composite Film for a Flexible Heat Sink.
    Cho H; Rho H; Kim JH; Chae SH; Pham TV; Seo TH; Kim HY; Ha JS; Kim HC; Lee SH; Kim MJ
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40801-40809. PubMed ID: 29064660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of Thermal Management Performance of Copper Foil Using Additive-Free Graphene Coating.
    Hu B; Yuan H; Chen G
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanocelluloses and Related Materials Applicable in Thermal Management of Electronic Devices: A Review.
    Sato K; Tominaga Y; Imai Y
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32131448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Porous copper-graphene heterostructures for cooling of electronic devices.
    Rho H; Jang YS; Kim S; Bae S; Kim TW; Lee DS; Ha JS; Lee SH
    Nanoscale; 2017 Jun; 9(22):7565-7569. PubMed ID: 28534904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid Nanofluids-Next-Generation Fluids for Spray-Cooling-Based Thermal Management of High-Heat-Flux Devices.
    Asim M; Siddiqui FR
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient modulation of thermal transport in two-dimensional materials for thermal management in device applications.
    Duan F; Wei D; Chen A; Zheng X; Wang H; Qin G
    Nanoscale; 2023 Jan; 15(4):1459-1483. PubMed ID: 36541854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Influence of Geometry, Surface Texture, and Cooling Method on the Efficiency of Heat Dissipation through the Heat Sink-A Review.
    Grochalski K; Rukat W; Jakubek B; Wieczorowski M; Słowiński M; Sarbinowska K; Graboń W
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal Matrix Composite in Heat Sink Application: Reinforcement, Processing, and Properties.
    Baig MMA; Hassan SF; Saheb N; Patel F
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Critical Review of Thermal Boundary Conductance across Wide and Ultrawide Bandgap Semiconductor Interfaces.
    Feng T; Zhou H; Cheng Z; Larkin LS; Neupane MR
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):29655-29673. PubMed ID: 37326498
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 33.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 34.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 35.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 36.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]     [New Search]
    of 2.