BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 28534907)

  • 21. Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte.
    Sollami Delekta S; Adolfsson KH; Benyahia Erdal N; Hakkarainen M; Östling M; Li J
    Nanoscale; 2019 May; 11(21):10172-10177. PubMed ID: 31107494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water-Transferred, Inkjet-Printed Supercapacitors toward Conformal and Epidermal Energy Storage.
    Giannakou P; Tas MO; Le Borgne B; Shkunov M
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8456-8465. PubMed ID: 31985204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Layer-by-Layer Inkjet-Printed Manganese Oxide Nanosheets on Graphene for High-Performance Flexible Supercapacitors.
    Belal MA; Yousry R; Taulo G; AbdelHamid AA; Rashed AE; El-Moneim AA
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53632-53643. PubMed ID: 37957019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly transparent supercapacitors based on ZnO/MnO
    Borysiewicz MA; Ekielski M; Ogorzałek Z; Wzorek M; Kaczmarski J; Wojciechowski T
    Nanoscale; 2017 Jun; 9(22):7577-7587. PubMed ID: 28537626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing.
    Li J; Sollami Delekta S; Zhang P; Yang S; Lohe MR; Zhuang X; Feng X; Östling M
    ACS Nano; 2017 Aug; 11(8):8249-8256. PubMed ID: 28682595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transfer Printing of Sub-5 μm Graphene Electrodes for Flexible Microsupercapacitors.
    Song D; Secor EB; Wang Y; Hersam MC; Frisbie CD
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22303-22310. PubMed ID: 29894146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-Based Linear Tandem Micro-Supercapacitors with Metal-Free Current Collectors and High-Voltage Output.
    Shi X; Wu ZS; Qin J; Zheng S; Wang S; Zhou F; Sun C; Bao X
    Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29028132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexible fiber-shaped supercapacitors based on graphene/polyaniline hybrid fibers with high energy density and capacitance.
    Wu Y; Meng Z; Yang J; Xue Y
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33831848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Crumpled Ultrathin 1T MoS
    Shao Y; Fu JH; Cao Z; Song K; Sun R; Wan Y; Shamim A; Cavallo L; Han Y; Kaner RB; Tung VC
    ACS Nano; 2020 Jun; 14(6):7308-7318. PubMed ID: 32478507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transparent and Flexible Supercapacitors with Networked Electrodes.
    Kiruthika S; Sow C; Kulkarni GU
    Small; 2017 Oct; 13(40):. PubMed ID: 28834115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes.
    Yuksel R; Sarioba Z; Cirpan A; Hiralal P; Unalan HE
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15434-9. PubMed ID: 25127070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inkjet-Printed Ultrathin MoS
    Li B; Liang X; Li G; Shao F; Xia T; Xu S; Hu N; Su Y; Yang Z; Zhang Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39444-39454. PubMed ID: 32805816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sand-Milling Fabrication of Screen-Printable Graphene Composite Inks for High-Performance Planar Micro-Supercapacitors.
    Chen H; Chen S; Zhang Y; Ren H; Hu X; Bai Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56319-56329. PubMed ID: 33280375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High Voltage Microsupercapacitors Fabricated and Assembled by Laser Carving.
    Bai S; Tang Y; Wu Y; Liu J; Liu H; Yuan W; Lu L; Mai W; Li H; Xie Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45541-45548. PubMed ID: 32909743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conductive MXene/Polymer Composites for Transparent Flexible Supercapacitors.
    Ren S; Pan X; Zhang Y; Xu J; Liu Z; Zhang X; Li X; Gao X; Zhong Y; Chen S; Wang SD
    Small; 2024 May; ():e2401346. PubMed ID: 38700047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Customizable Metal Micromesh Electrode Enabling Flexible Transparent Zn-Ion Hybrid Supercapacitors with High Energy Density.
    Zhang G; Liu X; Liu H; Wang X; Duan F; Yu H; Nie Z; Wei D; Zhang Y; Pan H; Duan H
    Small Methods; 2024 Jun; 8(6):e2300792. PubMed ID: 37802968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free-Standing Black Phosphorus Thin Films for Flexible Quasi-Solid-State Micro-Supercapacitors with High Volumetric Power and Energy Density.
    Yang J; Pan Z; Yu Q; Zhang Q; Ding X; Shi X; Qiu Y; Zhang K; Wang J; Zhang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5938-5946. PubMed ID: 30648840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Printing of Additive-Free 2D Ti
    Orangi J; Hamade F; Davis VA; Beidaghi M
    ACS Nano; 2020 Jan; 14(1):640-650. PubMed ID: 31891247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films.
    Ge J; Cheng G; Chen L
    Nanoscale; 2011 Aug; 3(8):3084-8. PubMed ID: 21738910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.