BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28534948)

  • 1. Dual strands of pre-miR‑150 (miR‑150‑5p and miR‑150‑3p) act as antitumor miRNAs targeting SPOCK1 in naïve and castration-resistant prostate cancer.
    Okato A; Arai T; Kojima S; Koshizuka K; Osako Y; Idichi T; Kurozumi A; Goto Y; Kato M; Naya Y; Ichikawa T; Seki N
    Int J Oncol; 2017 Jul; 51(1):245-256. PubMed ID: 28534948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of SPOCK1 by dual strands of pre-miR-150 inhibit cancer cell migration and invasion in esophageal squamous cell carcinoma.
    Osako Y; Seki N; Koshizuka K; Okato A; Idichi T; Arai T; Omoto I; Sasaki K; Uchikado Y; Kita Y; Kurahara H; Maemura K; Natsugoe S
    J Hum Genet; 2017 Nov; 62(11):935-944. PubMed ID: 28659612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antitumor miR-150-5p and miR-150-3p inhibit cancer cell aggressiveness by targeting SPOCK1 in head and neck squamous cell carcinoma.
    Koshizuka K; Hanazawa T; Kikkawa N; Katada K; Okato A; Arai T; Idichi T; Osako Y; Okamoto Y; Seki N
    Auris Nasus Larynx; 2018 Aug; 45(4):854-865. PubMed ID: 29233721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA expression signature of castration-resistant prostate cancer: the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker.
    Goto Y; Kojima S; Nishikawa R; Kurozumi A; Kato M; Enokida H; Matsushita R; Yamazaki K; Ishida Y; Nakagawa M; Naya Y; Ichikawa T; Seki N
    Br J Cancer; 2015 Sep; 113(7):1055-65. PubMed ID: 26325107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell aggressiveness and is involved in CRPC.
    Arai T; Okato A; Yamada Y; Sugawara S; Kurozumi A; Kojima S; Yamazaki K; Naya Y; Ichikawa T; Seki N
    Cancer Med; 2018 May; 7(5):1988-2002. PubMed ID: 29608247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pirin: a potential novel therapeutic target for castration-resistant prostate cancer regulated by miR-455-5p.
    Arai T; Kojima S; Yamada Y; Sugawara S; Kato M; Yamazaki K; Naya Y; Ichikawa T; Seki N
    Mol Oncol; 2019 Feb; 13(2):322-337. PubMed ID: 30444038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer.
    Okato A; Goto Y; Kurozumi A; Kato M; Kojima S; Matsushita R; Yonemori M; Miyamoto K; Ichikawa T; Seki N
    Int J Oncol; 2016 Jul; 49(1):111-22. PubMed ID: 27212625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis.
    Chien MH; Lin YW; Wen YC; Yang YC; Hsiao M; Chang JL; Huang HC; Lee WJ
    J Exp Clin Cancer Res; 2019 Jun; 38(1):246. PubMed ID: 31182131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downregulation of matrix metalloproteinase 14 by the antitumor miRNA, miR-150-5p, inhibits the aggressiveness of lung squamous cell carcinoma cells.
    Suetsugu T; Koshizuka K; Seki N; Mizuno K; Okato A; Arai T; Misono S; Uchida A; Kumamoto T; Inoue H
    Int J Oncol; 2018 Mar; 52(3):913-924. PubMed ID: 29286099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of HMGB3 by antitumor miR-205-5p inhibits cancer cell aggressiveness and is involved in prostate cancer pathogenesis.
    Yamada Y; Nishikawa R; Kato M; Okato A; Arai T; Kojima S; Yamazaki K; Naya Y; Ichikawa T; Seki N
    J Hum Genet; 2018 Feb; 63(2):195-205. PubMed ID: 29196733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPOCK1 as a potential cancer prognostic marker promotes the proliferation and metastasis of gallbladder cancer cells by activating the PI3K/AKT pathway.
    Shu YJ; Weng H; Ye YY; Hu YP; Bao RF; Cao Y; Wang XA; Zhang F; Xiang SS; Li HF; Wu XS; Li ML; Jiang L; Lu W; Han BS; Jie ZG; Liu YB
    Mol Cancer; 2015 Jan; 14(1):12. PubMed ID: 25623055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer.
    Goto Y; Kurozumi A; Arai T; Nohata N; Kojima S; Okato A; Kato M; Yamazaki K; Ishida Y; Naya Y; Ichikawa T; Seki N
    Br J Cancer; 2017 Jul; 117(3):409-420. PubMed ID: 28641312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual Strands of Pre-miR-149 Inhibit Cancer Cell Migration and Invasion through Targeting FOXM1 in Renal Cell Carcinoma.
    Okato A; Arai T; Yamada Y; Sugawara S; Koshizuka K; Fujimura L; Kurozumi A; Kato M; Kojima S; Naya Y; Ichikawa T; Seki N
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28902136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA expression profile of primary prostate cancer stem cells as a source of biomarkers and therapeutic targets.
    Rane JK; Scaravilli M; Ylipää A; Pellacani D; Mann VM; Simms MS; Nykter M; Collins AT; Visakorpi T; Maitland NJ
    Eur Urol; 2015 Jan; 67(1):7-10. PubMed ID: 25234358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upregulation of miR-3195, miR-3687 and miR-4417 is associated with castration-resistant prostate cancer.
    Rönnau CGH; Fussek S; Smit FP; Aalders TW; van Hooij O; Pinto PMC; Burchardt M; Schalken JA; Verhaegh GW
    World J Urol; 2021 Oct; 39(10):3789-3797. PubMed ID: 33990872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPOCK1 promotes tumor growth and metastasis in human prostate cancer.
    Chen Q; Yao YT; Xu H; Chen YB; Gu M; Cai ZK; Wang Z
    Drug Des Devel Ther; 2016; 10():2311-21. PubMed ID: 27486308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-27a-5p regulation by promoter methylation and MYC signaling in prostate carcinogenesis.
    Barros-Silva D; Costa-Pinheiro P; Duarte H; Sousa EJ; Evangelista AF; Graça I; Carneiro I; Martins AT; Oliveira J; Carvalho AL; Marques MM; Henrique R; Jerónimo C
    Cell Death Dis; 2018 Feb; 9(2):167. PubMed ID: 29415999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ACSL4 promotes prostate cancer growth, invasion and hormonal resistance.
    Wu X; Deng F; Li Y; Daniels G; Du X; Ren Q; Wang J; Wang LH; Yang Y; Zhang V; Zhang D; Ye F; Melamed J; Monaco ME; Lee P
    Oncotarget; 2015 Dec; 6(42):44849-63. PubMed ID: 26636648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZRSR2 overexpression is a frequent and early event in castration-resistant prostate cancer development.
    He H; Hao J; Dong X; Wang Y; Xue H; Qu S; Choi SYC; Ci X; Wang Y; Wu R; Shi M; Zhao X; Collins C; Lin D; Wang Y
    Prostate Cancer Prostatic Dis; 2021 Sep; 24(3):775-785. PubMed ID: 33568749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA in prostate cancer: Practical aspects.
    Patil PA; Magi-Galluzzi C
    Histol Histopathol; 2015 Dec; 30(12):1379-96. PubMed ID: 26186079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.