These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 28535041)
1. Remarkably Stereospecific Utilization of ATP α,β-Halomethylene Analogues by Protein Kinases. Ni F; Kung A; Duan Y; Shah V; Amador CD; Guo M; Fan X; Chen L; Chen Y; McKenna CE; Zhang C J Am Chem Soc; 2017 Jun; 139(23):7701-7704. PubMed ID: 28535041 [TBL] [Abstract][Full Text] [Related]
2. β,γ-CHF- and β,γ-CHCl-dGTP diastereomers: synthesis, discrete 31P NMR signatures, and absolute configurations of new stereochemical probes for DNA polymerases. Wu Y; Zakharova VM; Kashemirov BA; Goodman MF; Batra VK; Wilson SH; McKenna CE J Am Chem Soc; 2012 May; 134(21):8734-7. PubMed ID: 22397499 [TBL] [Abstract][Full Text] [Related]
3. Completing the β,γ-CXY-dNTP Stereochemical Probe Toolkit: Synthetic Access to the dCTP Diastereomers and Haratipour P; Minard C; Nakhjiri M; Negahbani A; Chamberlain BT; Osuna J; Upton TG; Zhao M; Kashemirov BA; McKenna CE J Org Chem; 2020 Nov; 85(22):14592-14609. PubMed ID: 33125847 [TBL] [Abstract][Full Text] [Related]
4. New Chirally Modified Bisphosphonates for Synthesis of Individual Beta,Gamma-CHX-Deoxynucleotide Diastereomers. Haratipour P; Minard C; Nakhjiri M; Negahbani A; Kashemirov BA; McKenna CE Phosphorus Sulfur Silicon Relat Elem; 2019; 194(4-6):329-330. PubMed ID: 32377060 [TBL] [Abstract][Full Text] [Related]
5. 5'-β,γ-CHF-ATP diastereomers: synthesis and fluorine-mediated selective binding by c-Src protein kinase. Hwang CS; Kung A; Kashemirov BA; Zhang C; McKenna CE Org Lett; 2015 Apr; 17(7):1624-7. PubMed ID: 25781066 [TBL] [Abstract][Full Text] [Related]
6. Halogenated beta,gamma-methylene- and ethylidene-dGTP-DNA ternary complexes with DNA polymerase beta: structural evidence for stereospecific binding of the fluoromethylene analogues. Batra VK; Pedersen LC; Beard WA; Wilson SH; Kashemirov BA; Upton TG; Goodman MF; McKenna CE J Am Chem Soc; 2010 Jun; 132(22):7617-25. PubMed ID: 20465217 [TBL] [Abstract][Full Text] [Related]
7. Different Enzymatic Processing of γ-Phosphoramidate and γ-Phosphoester-Modified ATP Analogues. Ermert S; Hacker SM; Buntru A; Scheffner M; Hauck CR; Marx A Chembiochem; 2017 Feb; 18(4):378-381. PubMed ID: 27935244 [TBL] [Abstract][Full Text] [Related]
8. Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography. Kraft L; Sprenger GA; Lindqvist Y J Mol Biol; 2002 May; 318(4):1057-69. PubMed ID: 12054802 [TBL] [Abstract][Full Text] [Related]
9. A computational protocol to evaluate the effects of protein mutants in the kinase gatekeeper position on the binding of ATP substrate analogues. Romano V; de Beer TA; Schwede T BMC Res Notes; 2017 Feb; 10(1):104. PubMed ID: 28219448 [TBL] [Abstract][Full Text] [Related]
10. Novel synthesis and structural characterization of a high-affinity paramagnetic kinase probe for the identification of non-ATP site binders by nuclear magnetic resonance. Moy FJ; Lee A; Gavrin LK; Xu ZB; Sievers A; Kieras E; Stochaj W; Mosyak L; McKew J; Tsao DH J Med Chem; 2010 Feb; 53(3):1238-49. PubMed ID: 20038108 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and biological testing of purine derivatives as potential ATP-competitive kinase inhibitors. Laufer SA; Domeyer DM; Scior TR; Albrecht W; Hauser DR J Med Chem; 2005 Feb; 48(3):710-22. PubMed ID: 15689155 [TBL] [Abstract][Full Text] [Related]
12. Detection of in vitro kinase generated protein phosphorylation sites using gamma[18O4]-ATP and mass spectrometry. Zhou M; Meng Z; Jobson AG; Pommier Y; Veenstra TD Anal Chem; 2007 Oct; 79(20):7603-10. PubMed ID: 17877366 [TBL] [Abstract][Full Text] [Related]
13. A universal and multiplex kinase assay using γ-[(18)O(4)]-ATP. Fu C; Zheng X; Jiang Y; Liu Y; Xu P; Zeng Z; Liu R; Zhao Y Chem Commun (Camb); 2013 Apr; 49(27):2795-7. PubMed ID: 23439932 [TBL] [Abstract][Full Text] [Related]
14. Screening of protein kinases by ATP-STD NMR spectroscopy. McCoy MA; Senior MM; Wyss DF J Am Chem Soc; 2005 Jun; 127(22):7978-9. PubMed ID: 15926798 [TBL] [Abstract][Full Text] [Related]
15. Associative mechanism for phosphoryl transfer: a molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates. Krishnamurthy H; Lou H; Kimple A; Vieille C; Cukier RI Proteins; 2005 Jan; 58(1):88-100. PubMed ID: 15521058 [TBL] [Abstract][Full Text] [Related]
16. Kinase selectivity potential for inhibitors targeting the ATP binding site: a network analysis. Huang D; Zhou T; Lafleur K; Nevado C; Caflisch A Bioinformatics; 2010 Jan; 26(2):198-204. PubMed ID: 19942586 [TBL] [Abstract][Full Text] [Related]
17. Nucleotide binding by the histidine kinase CheA. Bilwes AM; Quezada CM; Croal LR; Crane BR; Simon MI Nat Struct Biol; 2001 Apr; 8(4):353-60. PubMed ID: 11276258 [TBL] [Abstract][Full Text] [Related]
18. Characteristics of the Plasmodium falciparum PK5 ATP-binding site: implications for the design of novel antimalarial agents. Keenan SM; Welsh WJ J Mol Graph Model; 2004 Jan; 22(3):241-7. PubMed ID: 14629982 [TBL] [Abstract][Full Text] [Related]
19. Sp-2-propylthio-ATP-α-B and Sp-2-propylthio-ATP-α-B,β-γ-dichloromethylene are novel potent and specific agonists of the human P2Y₁₁ receptor. Haas M; Ben-Moshe I; Fischer B; Reiser G Biochem Pharmacol; 2013 Sep; 86(5):645-55. PubMed ID: 23810430 [TBL] [Abstract][Full Text] [Related]
20. Catalytic mechanisms and regulation of protein kinases. Wang Z; Cole PA Methods Enzymol; 2014; 548():1-21. PubMed ID: 25399640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]