These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 28535070)
1. Polarity Control of Heteroepitaxial GaN Nanowires on Diamond. Hetzl M; Kraut M; Hoffmann T; Stutzmann M Nano Lett; 2017 Jun; 17(6):3582-3590. PubMed ID: 28535070 [TBL] [Abstract][Full Text] [Related]
2. Selective area growth of GaN nanowires and nanofins by molecular beam epitaxy on heteroepitaxial diamond (001) substrates. Pantle F; Becker F; Kraut M; Wörle S; Hoffmann T; Artmeier S; Stutzmann M Nanoscale Adv; 2021 Jun; 3(13):3835-3845. PubMed ID: 36133019 [TBL] [Abstract][Full Text] [Related]
4. Surface passivation and self-regulated shell growth in selective area-grown GaN-(Al,Ga)N core-shell nanowires. Hetzl M; Winnerl J; Francaviglia L; Kraut M; Döblinger M; Matich S; Fontcuberta I Morral A; Stutzmann M Nanoscale; 2017 Jun; 9(21):7179-7188. PubMed ID: 28513695 [TBL] [Abstract][Full Text] [Related]
5. Self-assembled GaN nanowires on diamond. Schuster F; Furtmayr F; Zamani R; Magén C; Morante JR; Arbiol J; Garrido JA; Stutzmann M Nano Lett; 2012 May; 12(5):2199-204. PubMed ID: 22506554 [TBL] [Abstract][Full Text] [Related]
6. Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy. Schuster F; Hetzl M; Weiszer S; Garrido JA; de la Mata M; Magen C; Arbiol J; Stutzmann M Nano Lett; 2015 Mar; 15(3):1773-9. PubMed ID: 25633130 [TBL] [Abstract][Full Text] [Related]
7. Assessment of Polarity in GaN Self-Assembled Nanowires by Electrical Force Microscopy. Minj A; Cros A; Garro N; Colchero J; Auzelle T; Daudin B Nano Lett; 2015 Oct; 15(10):6770-6. PubMed ID: 26380860 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous nucleation and growth of GaN nanowires: the fundamental role of crystal polarity. Fernández-Garrido S; Kong X; Gotschke T; Calarco R; Geelhaar L; Trampert A; Brandt O Nano Lett; 2012 Dec; 12(12):6119-25. PubMed ID: 23130785 [TBL] [Abstract][Full Text] [Related]
9. Nanowires as semi-rigid substrates for growth of thick, In(x)Ga(1-x)N (x > 0.4) epi-layers without phase segregation for photoelectrochemical water splitting. Pendyala C; Jasinski JB; Kim JH; Vendra VK; Lisenkov S; Menon M; Sunkara MK Nanoscale; 2012 Oct; 4(20):6269-75. PubMed ID: 22968333 [TBL] [Abstract][Full Text] [Related]
10. Selective area formation of GaN nanowires on GaN substrates by the use of amorphous Al Sobanska M; Zytkiewicz ZR; Klosek K; Kruszka R; Golaszewska K; Ekielski M; Gieraltowska S Nanotechnology; 2020 May; 31(18):184001. PubMed ID: 31940593 [TBL] [Abstract][Full Text] [Related]
11. Titanium Carbide MXene Nucleation Layer for Epitaxial Growth of High-Quality GaN Nanowires on Amorphous Substrates. Prabaswara A; Kim H; Min JW; Subedi RC; Anjum DH; Davaasuren B; Moore K; Conroy M; Mitra S; Roqan IS; Ng TK; Alshareef HN; Ooi BS ACS Nano; 2020 Feb; 14(2):2202-2211. PubMed ID: 31986010 [TBL] [Abstract][Full Text] [Related]
12. Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires. Liu Q; Liu B; Yang W; Yang B; Zhang X; Labbé C; Portier X; An V; Jiang X Nanoscale; 2017 Apr; 9(16):5212-5221. PubMed ID: 28397937 [TBL] [Abstract][Full Text] [Related]
13. Determining GaN Nanowire Polarity and its Influence on Light Emission in the Scanning Electron Microscope. Naresh-Kumar G; Bruckbauer J; Winkelmann A; Yu X; Hourahine B; Edwards PR; Wang T; Trager-Cowan C; Martin RW Nano Lett; 2019 Jun; 19(6):3863-3870. PubMed ID: 31035764 [TBL] [Abstract][Full Text] [Related]
14. Growth by molecular beam epitaxy and properties of inclined GaN nanowires on Si(001) substrate. Borysiuk J; Zytkiewicz ZR; Sobanska M; Wierzbicka A; Klosek K; Korona KP; Perkowska PS; Reszka A Nanotechnology; 2014 Apr; 25(13):135610. PubMed ID: 24598248 [TBL] [Abstract][Full Text] [Related]
15. Crystallographic polarity measurements in two-terminal GaN nanowire devices by lateral piezoresponse force microscopy. Brubaker MD; Roshko A; Berweger S; Blanchard PT; Little CAE; Harvey TE; Sanford NA; Bertness KA Nanotechnology; 2020 Jun; 31(42):424002. PubMed ID: 32580185 [TBL] [Abstract][Full Text] [Related]
16. The influence of an AlN seeding layer on nucleation of self-assembled GaN nanowires on silicon substrates. Wu Y; Liu B; Li Z; Tao T; Xie Z; Wang K; Xiu X; Chen D; Lu H; Zhang R; Zheng Y Nanotechnology; 2020 Jan; 31(4):045604. PubMed ID: 31578003 [TBL] [Abstract][Full Text] [Related]
17. Interfacial reactions during the molecular beam epitaxy of GaN nanowires on Ti/Al Calabrese G; Gao G; van Treeck D; Corfdir P; Sinito C; Auzelle T; Trampert A; Geelhaar L; Brandt O; Fernández-Garrido S Nanotechnology; 2019 Mar; 30(11):114001. PubMed ID: 30681980 [TBL] [Abstract][Full Text] [Related]
18. Complications in silane-assisted GaN nanowire growth. Jiang N; Ghosh S; Frentrup M; Fairclough SM; Loeto K; Kusch G; Oliver RA; Joyce HJ Nanoscale Adv; 2023 May; 5(9):2610-2620. PubMed ID: 37143793 [TBL] [Abstract][Full Text] [Related]
19. Density control of GaN nanowires at the wafer scale using self-assembled SiN Auzelle T; Oliva M; John P; Ramsteiner M; Trampert A; Geelhaar L; Brandt O Nanotechnology; 2023 Jun; 34(37):. PubMed ID: 37311438 [TBL] [Abstract][Full Text] [Related]
20. Polarity-Induced Selective Area Epitaxy of GaN Nanowires. de Souza Schiaber Z; Calabrese G; Kong X; Trampert A; Jenichen B; Dias da Silva JH; Geelhaar L; Brandt O; Fernández-Garrido S Nano Lett; 2017 Jan; 17(1):63-70. PubMed ID: 28073259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]