These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28535356)

  • 1. One-Dimensional Carrier Confinement in "Giant" CdS/CdSe Excitonic Nanoshells.
    Razgoniaeva N; Moroz P; Yang M; Budkina DS; Eckard H; Augspurger M; Khon D; Tarnovsky AN; Zamkov M
    J Am Chem Soc; 2017 Jun; 139(23):7815-7822. PubMed ID: 28535356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoshell quantum dots: Quantum confinement beyond the exciton Bohr radius.
    Cassidy J; Zamkov M
    J Chem Phys; 2020 Mar; 152(11):110902. PubMed ID: 32199442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant-Shell CdSe/CdS Nanocrystals: Exciton Coupling to Shell Phonons Investigated by Resonant Raman Spectroscopy.
    Lin ML; Miscuglio M; Polovitsyn A; Leng YC; Martín-García B; Moreels I; Tan PH; Krahne R
    J Phys Chem Lett; 2019 Feb; 10(3):399-405. PubMed ID: 30626187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.
    Protasenko V; Bacinello D; Kuno M
    J Phys Chem B; 2006 Dec; 110(50):25322-31. PubMed ID: 17165978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced lifetime of excitons in nonepitaxial Au/CdS core/shell nanocrystals.
    Lambright S; Butaeva E; Razgoniaeva N; Hopkins T; Smith B; Perera D; Corbin J; Khon E; Thomas R; Moroz P; Mereshchenko A; Tarnovsky A; Zamkov M
    ACS Nano; 2014 Jan; 8(1):352-61. PubMed ID: 24325605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual wavelength electroluminescence from CdSe/CdS tetrapods.
    Wong JI; Mishra N; Xing G; Li M; Chakrabortty S; Sum TC; Shi Y; Chan Y; Yang HY
    ACS Nano; 2014 Mar; 8(3):2873-9. PubMed ID: 24559396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Correlation of Excitonics with Efficiency in a Core-Shell Quantum Dot Solar Cell.
    Dana J; Maiti S; Tripathi VS; Ghosh HN
    Chemistry; 2018 Feb; 24(10):2418-2425. PubMed ID: 29193394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of heterojunction on exciton binding energy and electron-hole recombination probability in CdSe/ZnS quantum dots.
    Elward JM; Chakraborty A
    J Chem Theory Comput; 2015 Feb; 11(2):462-71. PubMed ID: 26580906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman excitation profiles of CdS in pure CdS and CdSe/CdS core/shell quantum dots: CdS-localized excitons.
    Gong K; Kelley DF; Kelley AM
    J Chem Phys; 2017 Dec; 147(22):224702. PubMed ID: 29246046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Spectral characteristics of CdSe/CdS nanocrystals].
    Liu SM; Xu Z; Wageh H; Xu XR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Dec; 22(6):908-11. PubMed ID: 12914161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-Phonon Coupling in CdSe/CdS Core/Shell Quantum Dots.
    Lin C; Gong K; Kelley DF; Kelley AM
    ACS Nano; 2015 Aug; 9(8):8131-41. PubMed ID: 26213123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-shell hybrid nanoparticles with functionalized quantum dots and ionic dyes: growth, monolayer formation, and electrical bistability.
    Das BC; Pal AJ
    ACS Nano; 2008 Sep; 2(9):1930-8. PubMed ID: 19206434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots.
    Fouladi-Oskouei J; Shojaei S; Liu Z
    J Phys Condens Matter; 2018 Apr; 30(14):145301. PubMed ID: 29460851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation wavelength dependence of the photoluminescence quantum yield and decay behavior of CdSe/CdS quantum dot/quantum rods with different aspect ratios.
    Geißler D; Würth C; Wolter C; Weller H; Resch-Genger U
    Phys Chem Chem Phys; 2017 May; 19(19):12509-12516. PubMed ID: 28470291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mn(2+)-Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier-Dopant Exchange Interactions.
    Delikanli S; Akgul MZ; Murphy JR; Barman B; Tsai Y; Scrace T; Zhang P; Bozok B; Hernández-Martínez PL; Christodoulides J; Cartwright AN; Petrou A; Demir HV
    ACS Nano; 2015 Dec; 9(12):12473-9. PubMed ID: 26567872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast Photoluminescence from the Core and the Shell in CdSe/CdS Dot-in-Rod Heterostructures.
    Diroll BT; Turk ME; Gogotsi N; Murray CB; Kikkawa JM
    Chemphyschem; 2016 Mar; 17(5):759-65. PubMed ID: 26502934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots.
    Lee DU; Kim DH; Choi DH; Kim SW; Lee HS; Yoo KH; Kim TW
    Opt Express; 2016 Jan; 24(2):A350-7. PubMed ID: 26832587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.