These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28535530)

  • 61. The efficiency of potassium removal during bicarbonate hemodialysis.
    Capdevila M; Ruiz IM; Ferrer C; Monllor F; Ludjvick C; García NH; Juncos LI
    Hemodial Int; 2005 Jul; 9(3):296-302. PubMed ID: 16191080
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Treatment of electrolyte disorders by hemodialysis].
    Galli D; Staffolani E; Miani N; Morosetti M; Di Daniele N
    G Ital Nefrol; 2011; 28(4):408-15. PubMed ID: 21809310
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Simple models for description of small-solute transport in peritoneal dialysis.
    Waniewski J; Werynski A; Heimbürger O; Lindholm B
    Blood Purif; 1991; 9(3):129-41. PubMed ID: 1801855
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hemodialysis using a constant potassium gradient: rationale of a multicenter study.
    Redaelli B; Limido D; Beretta P; Viganò MR
    Int J Artif Organs; 1995 Nov; 18(11):731-4. PubMed ID: 8964637
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Exchange of alkali trace elements in hemodialysis Patients: a comparison with Na(+) and K(+).
    Krachler M; Scharfetter H; Wirnsberger GH
    Nephron; 1999; 83(3):226-36. PubMed ID: 10529629
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [The mathematical modelling of water-osmotic equilibrium during the performance of hemodialysis].
    Orlova EV; Popovkin NN; Siniukhin VN; Stetsiuk EA
    Urol Nefrol (Mosk); 1996; (4):17-9. PubMed ID: 8928341
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Precision of data from models of sodium kinetics in hemodialysis].
    Ahrenholz P; Falkenhagen D; Hähling D; Klinkmann H
    Z Urol Nephrol; 1990 Aug; 83(8):439-48. PubMed ID: 2238885
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Prediction of postdialysis serum sodium concentration and transcellular fluid shift without measuring body fluid volumes.
    Kimura G; Van Stone JC; Bauer JH
    Artif Organs; 1983 Nov; 7(4):410-5. PubMed ID: 6651580
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sodium balance in maintenance hemodialysis.
    Lee SW
    Electrolyte Blood Press; 2012 Dec; 10(1):1-6. PubMed ID: 23508564
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A mathematical model comparing solute kinetics in low- and high-BMI hemodialysis patients.
    Cronin-Fine D; Gotch F; Levin NW; Kotanko P; Lysaght M
    Int J Artif Organs; 2007 Nov; 30(11):1000-7. PubMed ID: 18067102
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Continuous renal replacement therapy in the treatment of severe hyperkalemia: An in vitro study.
    Houzé P; Baud FJ; Raphalen JH; Winchenne A; Moreira S; Gault P; Carli P; Lamhaut L
    Int J Artif Organs; 2020 Feb; 43(2):87-93. PubMed ID: 31509049
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Study on sodium and potassium balance during hemodialysis.
    Kotyk P; Lopot F; Bláha J
    Artif Organs; 1995 Feb; 19(2):185-8. PubMed ID: 7763198
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Patient-specific modeling of multicompartmental fluid and mass exchange during dialysis.
    Casagrande G; Bianchi C; Vito D; Carfagna F; Minoretti C; Pontoriero G; Rombolà G; Schoenholzer C; Costantino ML
    Int J Artif Organs; 2016 Jul; 39(5):220-7. PubMed ID: 27338283
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Numerical simulation of the effect of sodium profile on cardiovascular response to hemodialysis.
    Lim KM; Choi SW; Min BG; Shim EB
    Yonsei Med J; 2008 Aug; 49(4):581-91. PubMed ID: 18729300
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dialysis unphysiology and sodium balance.
    Kim GH
    Electrolyte Blood Press; 2009 Dec; 7(2):31-7. PubMed ID: 21468183
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Cation selective electroanalysis of K(+)-, Na(+)- and Ca2(+) concentrations in acetate dialysis solutions].
    Brixius K; Schindler JG
    Biomed Tech (Berl); 1991; 36(1-2):2-5. PubMed ID: 2031988
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Compartment effects in hemodialysis.
    Schneditz D; Daugirdas JT
    Semin Dial; 2001; 14(4):271-7. PubMed ID: 11489202
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Gastrointestinal potassium binding in hemodialysis.
    Palmer BF; Clegg DJ
    Kidney Int; 2020 Nov; 98(5):1095-1097. PubMed ID: 33126973
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Observations from the Field Concerning the Use of 1 mEq/L Potassium Dialysate, Equipment Monitoring, Staffing, and Total Chlorine Testing.
    Vavrinchik J; Payton J
    Nephrol Nurs J; 2023; 50(1):43-47. PubMed ID: 36961073
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microfluidic DNA-based potassium nanosensors for improved dialysis treatment.
    Smith AF; Zhao B; You M; Jiménez JM
    Biomed Eng Online; 2019 Jun; 18(1):73. PubMed ID: 31185982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.