BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28535746)

  • 1. De novo transcriptome analysis and glucosinolate profiling in watercress (Nasturtium officinale R. Br.).
    Jeon J; Bong SJ; Park JS; Park YK; Arasu MV; Al-Dhabi NA; Park SU
    BMC Genomics; 2017 May; 18(1):401. PubMed ID: 28535746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the watercress (Nasturtium officinale R. Br.; Brassicaceae) transcriptome using RNASeq and identification of candidate genes for important phytonutrient traits linked to human health.
    Voutsina N; Payne AC; Hancock RD; Clarkson GJ; Rothwell SD; Chapman MA; Taylor G
    BMC Genomics; 2016 May; 17():378. PubMed ID: 27206485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.).
    Kopsell DA; Barickman TC; Sams CE; McElroy JS
    J Agric Food Chem; 2007 Dec; 55(26):10628-34. PubMed ID: 18052091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Glucosinolate Production in Watercress ( Nasturtium officinale) Hairy Roots by Overexpressing Cabbage Transcription Factors.
    Cuong DM; Park CH; Bong SJ; Kim NS; Kim JK; Park SU
    J Agric Food Chem; 2019 May; 67(17):4860-4867. PubMed ID: 30973222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes.
    Park NI; Kim JK; Park WT; Cho JW; Lim YP; Park SU
    Mol Biol Rep; 2011 Nov; 38(8):4947-53. PubMed ID: 21161399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.
    Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ
    Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of Nasturtium officinale, Barbarea verna and Arabis caucasica for hairy roots and glucosinolate-myrosinase system production.
    Wielanek M; Królicka A; Bergier K; Gajewska E; Skłodowska M
    Biotechnol Lett; 2009 Jun; 31(6):917-21. PubMed ID: 19229477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific glucosinolate analysis reveals variable levels of epimeric glucobarbarins, dietary precursors of 5-phenyloxazolidine-2-thiones, in watercress types with contrasting chromosome numbers.
    Agerbirk N; Olsen CE; Cipollini D; Ørgaard M; Linde-Laursen I; Chew FS
    J Agric Food Chem; 2014 Oct; 62(39):9586-96. PubMed ID: 25226408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and analysis of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation in watercress (
    Bong SJ; Jeon J; Park YJ; Kim JK; Park SU
    3 Biotech; 2020 Jun; 10(6):260. PubMed ID: 32477847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyphenolics, glucosinolates and isothiocyanates profiling of aerial parts of
    Kyriakou S; Michailidou K; Amery T; Stewart K; Winyard PG; Trafalis DT; Franco R; Pappa A; Panayiotidis MI
    Front Plant Sci; 2022; 13():998755. PubMed ID: 36457522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies.
    Yi GE; Robin AH; Yang K; Park JI; Kang JG; Yang TJ; Nou IS
    Molecules; 2015 Jul; 20(7):13089-111. PubMed ID: 26205053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.).
    Engelen-Eigles G; Holden G; Cohen JD; Gardner G
    J Agric Food Chem; 2006 Jan; 54(2):328-34. PubMed ID: 16417287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complete chloroplast genome sequence of watercress (Nasturtium officinale R. Br.): Genome organization, adaptive evolution and phylogenetic relationships in Cardamineae.
    Yan C; Du J; Gao L; Li Y; Hou X
    Gene; 2019 May; 699():24-36. PubMed ID: 30849538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogenic variations of ascorbic acid and phenethyl isothiocyanate concentrations in watercress (Nasturtium officinale R.Br.) leaves.
    Palaniswamy UR; McAvoy RJ; Bible BB; Stuart JD
    J Agric Food Chem; 2003 Aug; 51(18):5504-9. PubMed ID: 12926905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism.
    Wang Y; Pan Y; Liu Z; Zhu X; Zhai L; Xu L; Yu R; Gong Y; Liu L
    BMC Genomics; 2013 Nov; 14(1):836. PubMed ID: 24279309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of glucosinolates in pickling cruciferous vegetables.
    Suzuki C; Ohnishi-Kameyama M; Sasaki K; Murata T; Yoshida M
    J Agric Food Chem; 2006 Dec; 54(25):9430-6. PubMed ID: 17147429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation of selected macro- and microelements and their impact on antioxidant properties and accumulation of glucosinolates and phenolic acids in in vitro cultures of Nasturtium officinale (watercress) microshoots.
    Klimek-Szczykutowicz M; Szopa A; Blicharska E; Dziurka M; Komsta Ł; Ekiert H
    Food Chem; 2019 Dec; 300():125184. PubMed ID: 31351261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel glucosinolate metabolism in larvae of the leaf beetle Phaedon cochleariae.
    Friedrichs J; Schweiger R; Geisler S; Mix A; Wittstock U; Müller C
    Insect Biochem Mol Biol; 2020 Sep; 124():103431. PubMed ID: 32653632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of
    Klimek-Szczykutowicz M; Szopa A; Dziurka M; Komsta Ł; Tomczyk M; Ekiert H
    Biomolecules; 2020 Aug; 10(9):. PubMed ID: 32825613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunomodulating Effect of the Consumption of Watercress
    Schulze H; Hornbacher J; Wasserfurth P; Reichel T; Günther T; Krings U; Krüger K; Hahn A; Papenbrock J; Schuchardt JP
    Foods; 2021 Jul; 10(8):. PubMed ID: 34441551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.