These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28535986)

  • 1. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries.
    Parisutham V; Chandran SP; Mukhopadhyay A; Lee SK; Keasling JD
    Bioresour Technol; 2017 Sep; 239():496-506. PubMed ID: 28535986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature.
    Chen R
    Bioengineered; 2015; 6(2):69-72. PubMed ID: 25587851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):407-25. PubMed ID: 20172020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):308-24. PubMed ID: 20080173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains.
    Cheng P; Liu B; Su Y; Hu Y; Hong Y; Yi X; Chen L; Su S; Chu JSC; Chen N; Xiong X
    Microb Cell Fact; 2017 Apr; 16(1):63. PubMed ID: 28420406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered
    Lee WH; Jin YS
    J Microbiol Biotechnol; 2021 Jul; 31(7):1035-1043. PubMed ID: 34226403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains.
    Smekenov I; Bakhtambayeva M; Bissenbayev K; Saparbayev M; Taipakova S; Bissenbaev AK
    Braz J Microbiol; 2020 Mar; 51(1):107-123. PubMed ID: 31776864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica.
    Lane S; Zhang S; Wei N; Rao C; Jin YS
    Biotechnol Bioeng; 2015 May; 112(5):1012-22. PubMed ID: 25421388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the cellobiose hydrolysis activity of glucose-stimulating β-glucosidase Bgl2A.
    Liu S; Zhang M; Hong D; Fang Z; Xiao Y; Fang W; Zhang X
    Enzyme Microb Technol; 2023 Sep; 169():110289. PubMed ID: 37473697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation.
    Lee WH; Jin YS
    J Biotechnol; 2017 Mar; 245():1-8. PubMed ID: 28143766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis.
    Tu M; Zhang X; Kurabi A; Gilkes N; Mabee W; Saddler J
    Biotechnol Lett; 2006 Feb; 28(3):151-6. PubMed ID: 16489491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolytic and phosphorolytic metabolism of cellobiose by the marine aerobic bacterium Saccharophagus degradans 2-40T.
    Zhang H; Moon YH; Watson BJ; Suvorov M; Santos E; Sinnott CA; Hutcheson SW
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):1117-25. PubMed ID: 21327449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation.
    Kim H; Lee WH; Galazka JM; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1087-94. PubMed ID: 24190499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase.
    Kim H; Oh EJ; Lane ST; Lee WH; Cate JHD; Jin YS
    J Biotechnol; 2018 Jun; 275():53-59. PubMed ID: 29660472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms.
    Rutter C; Chen R
    Biotechnol Lett; 2014 Feb; 36(2):301-7. PubMed ID: 24101240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent metabolism of oligosaccharides is the keystone of synchronous utilization of cellulose and hemicellulose in
    Liu J; Chen M; Gu S; Fan R; Zhao Z; Sun W; Yao Y; Li J; Tian C
    PNAS Nexus; 2024 Feb; 3(2):pgae053. PubMed ID: 38380057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars.
    Fan LH; Zhang ZJ; Mei S; Lu YY; Li M; Wang ZY; Yang JG; Yang ST; Tan TW
    Biotechnol Biofuels; 2016; 9():137. PubMed ID: 27382414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application.
    Singhania RR; Patel AK; Pandey A; Ganansounou E
    Bioresour Technol; 2017 Dec; 245(Pt B):1352-1361. PubMed ID: 28596076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the mechanism of enzymatic hydrolysis of cellulosic substances.
    Ghose TK; Bisaria VS
    Biotechnol Bioeng; 1979 Jan; 21(1):131-46. PubMed ID: 106903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.