These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28536286)

  • 1. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production.
    Lemmer KC; Zhang W; Langer SJ; Dohnalkova AC; Hu D; Lemke RA; Piotrowski JS; Orr G; Noguera DR; Donohue TJ
    mBio; 2017 May; 8(3):. PubMed ID: 28536286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-dependent regulation of bacterial lipid production.
    Lemmer KC; Dohnalkova AC; Noguera DR; Donohue TJ
    J Bacteriol; 2015 May; 197(9):1649-58. PubMed ID: 25733615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroides.
    Lang HP; Cogdell RJ; Takaichi S; Hunter CN
    J Bacteriol; 1995 Apr; 177(8):2064-73. PubMed ID: 7721699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for two chemosensory pathways in Rhodobacter sphaeroides.
    Hamblin PA; Maguire BA; Grishanin RN; Armitage JP
    Mol Microbiol; 1997 Dec; 26(5):1083-96. PubMed ID: 9426144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The NtrYX Two-Component System Regulates the Bacterial Cell Envelope.
    Lemmer KC; Alberge F; Myers KS; Dohnalkova AC; Schaub RE; Lenz JD; Imam S; Dillard JP; Noguera DR; Donohue TJ
    mBio; 2020 May; 11(3):. PubMed ID: 32430476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of long-chain free fatty acids from metabolically engineered Rhodobacter sphaeroides heterologously producing periplasmic phospholipase A2 in dodecane-overlaid two-phase culture.
    Tong X; Oh EK; Lee BH; Lee JK
    Microb Cell Fact; 2019 Jan; 18(1):20. PubMed ID: 30704481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids.
    Ledesma-Amaro R; Nicaud JM
    Prog Lipid Res; 2016 Jan; 61():40-50. PubMed ID: 26703186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Engineering Approaches Used to Increase Lipid Production and Alter Lipid Profile in Microbes.
    Tang XL; Xue YP
    Methods Mol Biol; 2019; 1995():141-150. PubMed ID: 31148126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as a biofactory for biodiesel production.
    Katre G; Ajmera N; Zinjarde S; RaviKumar A
    Microb Cell Fact; 2017 Oct; 16(1):176. PubMed ID: 29065878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers.
    Slininger PJ; Dien BS; Kurtzman CP; Moser BR; Bakota EL; Thompson SR; O'Bryan PJ; Cotta MA; Balan V; Jin M; Sousa Lda C; Dale BE
    Biotechnol Bioeng; 2016 Aug; 113(8):1676-90. PubMed ID: 26724417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of TnphoA gene fusions in Rhodobacter sphaeroides: isolation and characterization of a respiratory mutant unable to utilize dimethyl sulfoxide as a terminal electron acceptor during anaerobic growth in the dark on glucose.
    Moore MD; Kaplan S
    J Bacteriol; 1989 Aug; 171(8):4385-94. PubMed ID: 2546920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. I. Molecular cloning, transposon mutagenesis and sequence analysis of the gene.
    Coomber SA; Jones RM; Jordan PM; Hunter CN
    Mol Microbiol; 1992 Nov; 6(21):3159-69. PubMed ID: 1333567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1996 Feb; 178(4):985-93. PubMed ID: 8576072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: effect of a transposon insertion in the hbdA gene.
    Fales L; Kryszak L; Zeilstra-Ryalls J
    J Bacteriol; 2001 Mar; 183(5):1568-76. PubMed ID: 11160087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic evidence for the role of isocytochrome c2 in photosynthetic growth of Rhodobacter sphaeroides Spd mutants.
    Rott MA; Witthuhn VC; Schilke BA; Soranno M; Ali A; Donohue TJ
    J Bacteriol; 1993 Jan; 175(2):358-66. PubMed ID: 8380401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of plasmid DNA sequences that complement Rhodobacter sphaeroides mutants deficient in the capacity for CO2-dependent growth.
    Rainey AM; Tabita FR
    J Gen Microbiol; 1989 Jun; 135(6):1699-713. PubMed ID: 2515249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coenzyme Q10 production by Rhodobacter sphaeroides in stirred tank and in airlift bioreactor.
    Yen HW; Shih TY
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):711-6. PubMed ID: 19153771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bacterial biosynthetic pathway for methylated furan fatty acids.
    Lemke RAS; Olson SM; Morse K; Karlen SD; Higbee A; Beebe ET; Ralph J; Coon JJ; Fox BG; Donohue TJ
    J Biol Chem; 2020 Jul; 295(29):9786-9801. PubMed ID: 32434926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production.
    Mukhtar H; Suliman SM; Shabbir A; Mumtaz MW; Rashid U; Rahimuddin SA
    Protein Pept Lett; 2018; 25(2):195-201. PubMed ID: 29359654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an operon involved in sulfolipid biosynthesis in Rhodobacter sphaeroides.
    Benning C; Somerville CR
    J Bacteriol; 1992 Oct; 174(20):6479-87. PubMed ID: 1400200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.