These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28536315)

  • 21. The increase of pericyte population in human neuromuscular disorders supports their role in muscle regeneration in vivo.
    Díaz-Manera J; Gallardo E; de Luna N; Navas M; Soria L; Garibaldi M; Rojas-García R; Tonlorenzi R; Cossu G; Illa I
    J Pathol; 2012 Dec; 228(4):544-53. PubMed ID: 22847756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Granulocyte colony-stimulating factor/granulocyte colony-stimulating factor receptor biological axis promotes survival and growth of bladder cancer cells.
    Chakraborty A; Guha S
    Urology; 2007 Jun; 69(6):1210-5. PubMed ID: 17572226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PRMT7 Preserves Satellite Cell Regenerative Capacity.
    Blanc RS; Vogel G; Chen T; Crist C; Richard S
    Cell Rep; 2016 Feb; 14(6):1528-1539. PubMed ID: 26854227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stem cell activation in skeletal muscle regeneration.
    Fu X; Wang H; Hu P
    Cell Mol Life Sci; 2015 May; 72(9):1663-77. PubMed ID: 25572293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Muscle regeneration: cellular and molecular events.
    Karalaki M; Fili S; Philippou A; Koutsilieris M
    In Vivo; 2009; 23(5):779-96. PubMed ID: 19779115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair.
    Ogura Y; Hindi SM; Sato S; Xiong G; Akira S; Kumar A
    Nat Commun; 2015 Dec; 6():10123. PubMed ID: 26648529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of muscle stem cells activation: the role of growth factors and extracellular matrix.
    Brzoska E; Ciemerych MA; Przewozniak M; Zimowska M
    Vitam Horm; 2011; 87():239-76. PubMed ID: 22127246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration.
    Qu-Petersen Z; Deasy B; Jankowski R; Ikezawa M; Cummins J; Pruchnic R; Mytinger J; Cao B; Gates C; Wernig A; Huard J
    J Cell Biol; 2002 May; 157(5):851-64. PubMed ID: 12021255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells.
    Rantanen J; Hurme T; Lukka R; Heino J; Kalimo H
    Lab Invest; 1995 Mar; 72(3):341-7. PubMed ID: 7898053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. G-CSF promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs.
    Shimoji K; Yuasa S; Onizuka T; Hattori F; Tanaka T; Hara M; Ohno Y; Chen H; Egasgira T; Seki T; Yae K; Koshimizu U; Ogawa S; Fukuda K
    Cell Stem Cell; 2010 Mar; 6(3):227-37. PubMed ID: 20207226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo.
    Ma X; Zhang S; Zhou J; Chen B; Shang Y; Gao T; Wang X; Xie H; Chen F
    J Tissue Eng Regen Med; 2012 Aug; 6(8):598-613. PubMed ID: 22396316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Satellite Cells and Skeletal Muscle Regeneration.
    Dumont NA; Bentzinger CF; Sincennes MC; Rudnicki MA
    Compr Physiol; 2015 Jul; 5(3):1027-59. PubMed ID: 26140708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of DLK1+ cells emerging during skeletal muscle remodeling in response to myositis, myopathies, and acute injury.
    Andersen DC; Petersson SJ; Jørgensen LH; Bollen P; Jensen PB; Teisner B; Schroeder HD; Jensen CH
    Stem Cells; 2009 Apr; 27(4):898-908. PubMed ID: 19353518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane.
    De Bari C; Dell'Accio F; Vandenabeele F; Vermeesch JR; Raymackers JM; Luyten FP
    J Cell Biol; 2003 Mar; 160(6):909-18. PubMed ID: 12629053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular and molecular regulation of muscle regeneration.
    Chargé SB; Rudnicki MA
    Physiol Rev; 2004 Jan; 84(1):209-38. PubMed ID: 14715915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state.
    Mourikis P; Sambasivan R; Castel D; Rocheteau P; Bizzarro V; Tajbakhsh S
    Stem Cells; 2012 Feb; 30(2):243-52. PubMed ID: 22069237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stem cells to treat muscular dystrophies.
    Morgan JE
    Acta Myol; 2005 Dec; 24(3):181-3. PubMed ID: 16629051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells.
    Mizuno Y; Chang H; Umeda K; Niwa A; Iwasa T; Awaya T; Fukada S; Yamamoto H; Yamanaka S; Nakahata T; Heike T
    FASEB J; 2010 Jul; 24(7):2245-53. PubMed ID: 20181939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of muscle stem cells during skeletal regeneration.
    Abou-Khalil R; Yang F; Lieu S; Julien A; Perry J; Pereira C; Relaix F; Miclau T; Marcucio R; Colnot C
    Stem Cells; 2015 May; 33(5):1501-11. PubMed ID: 25594525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel GFP reporter mouse reveals Mustn1 expression in adult regenerating skeletal muscle, activated satellite cells and differentiating myoblasts.
    Krause MP; Moradi J; Coleman SK; D'Souza DM; Liu C; Kronenberg MS; Rowe DW; Hawke TJ; Hadjiargyrou M
    Acta Physiol (Oxf); 2013 Jun; 208(2):180-90. PubMed ID: 23506283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.