BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 28536357)

  • 1. Glycosylated Triterpenoids as Endosomal Escape Enhancers in Targeted Tumor Therapies.
    Fuchs H; Niesler N; Trautner A; Sama S; Jerz G; Panjideh H; Weng A
    Biomedicines; 2017 Mar; 5(2):. PubMed ID: 28536357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers.
    Fuchs H; Weng A; Gilabert-Oriol R
    Toxins (Basel); 2016 Jul; 8(7):. PubMed ID: 27376327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cleavable peptide adapter augments the activity of targeted toxins in combination with the glycosidic endosomal escape enhancer SO1861.
    Schulze FJ; Asadian-Birjand M; Pradela M; Niesler N; Nagel G; Fuchs H
    BMC Biotechnol; 2024 Apr; 24(1):24. PubMed ID: 38685061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic Nanoparticle-Based Dianthin Targeting for Controlled Drug Release Using the Endosomal Escape Enhancer SO1861.
    Zarinwall A; Asadian-Birjand M; Seleci DA; Maurer V; Trautner A; Garnweitner G; Fuchs H
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33924180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of a tumor cell-specific, cytosol-penetrating antibody with high endosomal escape efficacy.
    Kim JS; Park JY; Shin SM; Park SW; Jun SY; Hong JS; Choi DK; Kim YS
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2510-2516. PubMed ID: 30208519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endosomal acidic pH-induced conformational changes of a cytosol-penetrating antibody mediate endosomal escape.
    Kim JS; Choi DK; Shin JY; Shin SM; Park SW; Cho HS; Kim YS
    J Control Release; 2016 Aug; 235():165-175. PubMed ID: 27264553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endosomal escape pathways for delivery of biologicals.
    Varkouhi AK; Scholte M; Storm G; Haisma HJ
    J Control Release; 2011 May; 151(3):220-8. PubMed ID: 21078351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Therapy of B-Cell Non-Hodgkin Lymphoma by Obinutuzumab-Dianthin Conjugates in Combination with the Endosomal Escape Enhancer SO1861.
    Panjideh H; Niesler N; Weng A; Fuchs H
    Toxins (Basel); 2022 Jul; 14(7):. PubMed ID: 35878216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular interactions of triterpenoids and targeted toxins: role of saponins charge.
    Thakur M; Weng A; Pieper A; Mergel K; von Mallinckrodt B; Gilabert-Oriol R; Görick C; Wiesner B; Eichhorst J; Melzig MF; Fuchs H
    Int J Biol Macromol; 2013 Oct; 61():285-94. PubMed ID: 23887142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Flow Cytometric Method to Quantify the Endosomal Escape of a Protein Toxin to the Cytosol of Target Cells.
    Wensley HJ; Johnston DA; Smith WS; Holmes SE; Flavell SU; Flavell DJ
    Pharm Res; 2019 Dec; 37(1):16. PubMed ID: 31873810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial approach to increase efficacy of Cetuximab, Panitumumab and Trastuzumab by dianthin conjugation and co-application of SO1861.
    Gilabert-Oriol R; Weng A; Trautner A; Weise C; Schmid D; Bhargava C; Niesler N; Wookey PJ; Fuchs H; Thakur M
    Biochem Pharmacol; 2015 Oct; 97(3):247-55. PubMed ID: 26253687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the Cellular Uptake, Endosomal Escape, and Cytosolic Entry Efficiencies of Cyclic Peptides.
    Salim H; Pei D
    Methods Mol Biol; 2022; 2371():301-316. PubMed ID: 34596855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endosomal escape efficiency of fusogenic B18 and B55 peptides fused with anti-EGFR single chain Fv as estimated by nuclear translocation.
    Niikura K; Horisawa K; Doi N
    J Biochem; 2016 Jan; 159(1):123-32. PubMed ID: 26338729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin.
    Sandvig K; van Deurs B
    Physiol Rev; 1996 Oct; 76(4):949-66. PubMed ID: 8874490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endosomal escape: a bottleneck in intracellular delivery.
    Shete HK; Prabhu RH; Patravale VB
    J Nanosci Nanotechnol; 2014 Jan; 14(1):460-74. PubMed ID: 24730275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Targeted Drug Delivery through Cell-Specific Endosomal Escape.
    Chen P; Cabral H
    ChemMedChem; 2024 Jun; ():e202400274. PubMed ID: 38830827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-Responsive Amphiphilic Carboxylate Polymers: Design and Potential for Endosomal Escape.
    Wang S
    Front Chem; 2021; 9():645297. PubMed ID: 33834015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery into cells: lessons learned from plant and bacterial toxins.
    Sandvig K; van Deurs B
    Gene Ther; 2005 Jun; 12(11):865-72. PubMed ID: 15815697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endosome-disruptive peptides for improving cytosolic delivery of bioactive macromolecules.
    Nakase I; Kobayashi S; Futaki S
    Biopolymers; 2010; 94(6):763-70. PubMed ID: 20564044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saponins modulate the intracellular trafficking of protein toxins.
    Weng A; Thakur M; von Mallinckrodt B; Beceren-Braun F; Gilabert-Oriol R; Wiesner B; Eichhorst J; Böttger S; Melzig MF; Fuchs H
    J Control Release; 2012 Nov; 164(1):74-86. PubMed ID: 23063550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.