BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 28536614)

  • 1. In vitro chondrogenesis of Wharton's jelly mesenchymal stem cells in hyaluronic acid-based hydrogels.
    Aleksander-Konert E; Paduszyński P; Zajdel A; Dzierżewicz Z; Wilczok A
    Cell Mol Biol Lett; 2016; 21():11. PubMed ID: 28536614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in expression of cartilaginous genes during chondrogenesis of Wharton's jelly mesenchymal stem cells on three-dimensional biodegradable poly(L-lactide-co-glycolide) scaffolds.
    Paduszyński P; Aleksander-Konert E; Zajdel A; Wilczok A; Jelonek K; Witek A; Dzierżewicz Z
    Cell Mol Biol Lett; 2016; 21():14. PubMed ID: 28536617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering.
    Reppel L; Schiavi J; Charif N; Leger L; Yu H; Pinzano A; Henrionnet C; Stoltz JF; Bensoussan D; Huselstein C
    Stem Cell Res Ther; 2015 Dec; 6():260. PubMed ID: 26718750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nicotine on the proliferation and chondrogenic differentiation of the human Wharton's jelly mesenchymal stem cells.
    Yang X; Qi Y; Avercenc-Leger L; Vincourt JB; Hupont S; Huselstein C; Wang H; Chen L; Magdalou J
    Biomed Mater Eng; 2017; 28(s1):S217-S228. PubMed ID: 28372298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization.
    Ranjbaran H; Abediankenari S; Mohammadi M; Jafari N; Khalilian A; Rahmani Z; Momeninezhad Amiri M; Ebrahimi P
    Acta Med Iran; 2018 Jan; 56(1):28-33. PubMed ID: 29436792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of Human Wharton's Jelly of Umbilical Cord Derived Mesenchymal Stem Cells to Be Chondrocytes and Transplantation in Guinea Pig Model with Spontaneous Osteoarthritis.
    Nadeem G; Theerakittayakorn K; Somredngan S; Thi Nguyen H; Boonthai T; Samruan W; Tangkanjanavelukul P; Parnpai R
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Injectable Hyaluronan-Methylcellulose (HAMC) Hydrogel Combined with Wharton's Jelly-Derived Mesenchymal Stromal Cells (WJ-MSCs) Promotes Degenerative Disc Repair.
    Choi UY; Joshi HP; Payne S; Kim KT; Kyung JW; Choi H; Cooke MJ; Kwon SY; Roh EJ; Sohn S; Shoichet MS; Han I
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33036383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving stemness and functional features of mesenchymal stem cells from Wharton's jelly of a human umbilical cord by mimicking the native, low oxygen stem cell niche.
    Obradovic H; Krstic J; Trivanovic D; Mojsilovic S; Okic I; Kukolj T; Ilic V; Jaukovic A; Terzic M; Bugarski D
    Placenta; 2019 Jul; 82():25-34. PubMed ID: 31174623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compared to the amniotic membrane, Wharton's jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration.
    Pu L; Meng M; Wu J; Zhang J; Hou Z; Gao H; Xu H; Liu B; Tang W; Jiang L; Li Y
    Stem Cell Res Ther; 2017 Mar; 8(1):72. PubMed ID: 28320452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of fibroblast growth factor on distinct differentiation potential of cord blood-derived unrestricted somatic stem cells and Wharton's jelly-derived mesenchymal stem/stromal cells.
    Lee S; Park BJ; Kim JY; Jekarl D; Choi HY; Lee SY; Kim M; Kim Y; Park MS
    Cytotherapy; 2015 Dec; 17(12):1723-31. PubMed ID: 26589753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system.
    Cardoso TC; Ferrari HF; Garcia AF; Novais JB; Silva-Frade C; Ferrarezi MC; Andrade AL; Gameiro R
    BMC Biotechnol; 2012 May; 12():18. PubMed ID: 22559872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Wharton's jelly mesenchymal stem cells: properties, isolation and clinical applications.
    Borys-Wójcik S; Brązert M; Jankowski M; Ożegowska K; Chermuła B; Piotrowska-Kempisty H; Bukowska D; Antosik P; Pawelczyk L; Nowicki M; Jeseta M; Kempisty B
    J Biol Regul Homeost Agents; 2019 Jan-Feb,; 33(1):119-123. PubMed ID: 30729769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic microenvironmental preconditioning enhance neuroprotective properties of human mesenchymal stem cells derived from Wharton's Jelly (WJ-MSCs).
    Lech W; Sarnowska A; Kuczynska Z; Dabrowski F; Figiel-Dabrowska A; Domanska-Janik K; Buzanska L; Zychowicz M
    Sci Rep; 2020 Oct; 10(1):16946. PubMed ID: 33037314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering.
    Chen X; Zhang F; He X; Xu Y; Yang Z; Chen L; Zhou S; Yang Y; Zhou Z; Sheng W; Zeng Y
    Injury; 2013 Apr; 44(4):540-9. PubMed ID: 23337703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment.
    Fong CY; Subramanian A; Gauthaman K; Venugopal J; Biswas A; Ramakrishna S; Bongso A
    Stem Cell Rev Rep; 2012 Mar; 8(1):195-209. PubMed ID: 21671058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cartilage-Specific Gene Expression and Extracellular Matrix Deposition in the Course of Mesenchymal Stromal Cell Chondrogenic Differentiation in 3D Spheroid Culture.
    Vakhrushev IV; Basok YB; Baskaev KK; Novikova VD; Leonov GE; Grigoriev AM; Belova AD; Kirsanova LA; Lupatov AY; Burunova VV; Kovalev AV; Makarevich PI; Sevastianov VI; Yarygin KN
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positive selection of Wharton's jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells.
    Amiri F; Halabian R; Dehgan Harati M; Bahadori M; Mehdipour A; Mohammadi Roushandeh A; Habibi Roudkenar M
    Hematology; 2015 May; 20(4):208-16. PubMed ID: 25116042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular matrix deposited by Wharton's jelly mesenchymal stem cells enhances cell expansion and tissue specific lineage potential.
    Wang Y; Jiang C; Cong S; Guo C; Yan Z
    Am J Transl Res; 2018; 10(11):3465-3480. PubMed ID: 30662600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics and clinical applications of Wharton's jelly-derived mesenchymal stromal cells.
    Liau LL; Ruszymah BHI; Ng MH; Law JX
    Curr Res Transl Med; 2020 Jan; 68(1):5-16. PubMed ID: 31543433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.