BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 28536892)

  • 1. Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory.
    Mousavi SJ; Avril S
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1765-1777. PubMed ID: 28536892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model.
    Mousavi SJ; Farzaneh S; Avril S
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1895-1913. PubMed ID: 31201620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries.
    Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA
    J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generalized prestressing algorithm for finite element simulations of preloaded geometries with application to the aorta.
    Weisbecker H; Pierce DM; Holzapfel GA
    Int J Numer Method Biomed Eng; 2014 Sep; 30(9):857-72. PubMed ID: 24596311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm.
    Das A; Paul A; Taylor MD; Banerjee RK
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S18. PubMed ID: 25603022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascending thoracic aortic aneurysm wall stress analysis using patient-specific finite element modeling of in vivo magnetic resonance imaging.
    Krishnan K; Ge L; Haraldsson H; Hope MD; Saloner DA; Guccione JM; Tseng EE
    Interact Cardiovasc Thorac Surg; 2015 Oct; 21(4):471-80. PubMed ID: 26180089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear model of human descending thoracic aortic segments with residual stresses.
    Breslavsky I; Amabili M
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1839-1855. PubMed ID: 30073613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the role of smooth muscle cells in large elastic arteries: a finite element analysis.
    Murtada SI; Holzapfel GA
    J Theor Biol; 2014 Oct; 358():1-10. PubMed ID: 24813071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of longitudinal pre-stretch and radial constraint on the stress distribution in the vessel wall: a new hypothesis.
    Zhang W; Herrera C; Atluri SN; Kassab GS
    Mech Chem Biosyst; 2005; 2(1):41-52. PubMed ID: 16708471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Inverse Finite Element u/p-Formulation to Predict the Unloaded State of In Vivo Biological Soft Tissues.
    Vavourakis V; Hipwell JH; Hawkes DJ
    Ann Biomed Eng; 2016 Jan; 44(1):187-201. PubMed ID: 26219402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
    Holzapfel GA; Ogden RW
    J R Soc Interface; 2010 May; 7(46):787-99. PubMed ID: 19828496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational stress-deformation analysis of arterial walls including high-pressure response.
    Holzapfel GA; Gasser TC
    Int J Cardiol; 2007 Mar; 116(1):78-85. PubMed ID: 16822562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of aortic root motion on wall stress in the Marfan aorta before and after personalised aortic root support (PEARS) surgery.
    Singh SD; Xu XY; Pepper JR; Izgi C; Treasure T; Mohiaddin RH
    J Biomech; 2016 Jul; 49(10):2076-2084. PubMed ID: 27255604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and residual stresses of arterial walls.
    Ren JS
    J Theor Biol; 2013 Nov; 337():80-8. PubMed ID: 23968891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constrained mixture modeling affects material parameter identification from planar biaxial tests.
    Maes L; Fehervary H; Vastmans J; Mousavi SJ; Avril S; Famaey N
    J Mech Behav Biomed Mater; 2019 Jul; 95():124-135. PubMed ID: 30991171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse material parameter estimation of patient-specific finite element models at the carotid bifurcation: The impact of excluding the zero-pressure configuration and residual stress.
    Johnston RD; Ghasemi M; Lally C
    Int J Numer Method Biomed Eng; 2023 Jan; 39(1):e3663. PubMed ID: 36443952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms.
    Davis FM; Luo Y; Avril S; Duprey A; Lu J
    Biomech Model Mechanobiol; 2015 Oct; 14(5):967-78. PubMed ID: 25576390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On incorporating osmotic prestretch/prestress in image-driven finite element simulations of cartilage.
    Wang X; Eriksson TSE; Ricken T; Pierce DM
    J Mech Behav Biomed Mater; 2018 Oct; 86():409-422. PubMed ID: 30031245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling.
    Peirlinck M; De Beule M; Segers P; Rebelo N
    J Mech Behav Biomed Mater; 2018 Sep; 85():124-133. PubMed ID: 29886406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational predictions of damage propagation preceding dissection of ascending thoracic aortic aneurysms.
    Mousavi SJ; Farzaneh S; Avril S
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2944. PubMed ID: 29171175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.