BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28537075)

  • 1. Borophene as a Promising Material for Charge-Modulated Switchable CO
    Tan X; Tahini HA; Smith SC
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19825-19830. PubMed ID: 28537075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture.
    Tan X; Kou L; Tahini HA; Smith SC
    Sci Rep; 2015 Dec; 5():17636. PubMed ID: 26621618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles study of χ
    Luo W; Wang H; Wang Z; Liu G; Liu S; Ouyang C
    Phys Chem Chem Phys; 2020 Apr; 22(16):8864-8869. PubMed ID: 32285889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-controlled switchable CO2 capture on boron nitride nanomaterials.
    Sun Q; Li Z; Searles DJ; Chen Y; Lu GM; Du A
    J Am Chem Soc; 2013 Jun; 135(22):8246-53. PubMed ID: 23678978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge-controlled switchable CO
    Guo Y; Kang X; Gao S; Duan X
    Phys Chem Chem Phys; 2023 May; 25(17):12420-12425. PubMed ID: 37096319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layered Graphene-Hexagonal BN Nanocomposites: Experimentally Feasible Approach to Charge-Induced Switchable CO2 Capture.
    Tan X; Kou L; Smith SC
    ChemSusChem; 2015 Sep; 8(17):2987-93. PubMed ID: 26073178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage.
    Tan X; Tahini HA; Smith SC
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32815-32822. PubMed ID: 27934167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.
    Tan X; Kou L; Tahini HA; Smith SC
    ChemSusChem; 2015 Nov; 8(21):3626-31. PubMed ID: 26384030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen.
    Jiao Y; Zheng Y; Smith SC; Du A; Zhu Z
    ChemSusChem; 2014 Feb; 7(2):435-41. PubMed ID: 24488677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can Charge-Modulated Metal-Organic Frameworks Achieve High-Performance CO
    Wang M; Kong L; Lu X; Wu CL
    ChemSusChem; 2022 Feb; 15(3):e202101674. PubMed ID: 34873862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-Principles Study of Electrocatalytically Reversible CO
    Qin G; Cui Q; Wang W; Li P; Du A; Sun Q
    Chemphyschem; 2018 Oct; 19(20):2788-2795. PubMed ID: 30063817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles study of pristine and Li-doped borophene as a candidate to detect and scavenge SO
    Tu X; Xu H; Wang X; Li C; Fan G; Chu X
    Nanotechnology; 2021 May; 32(32):. PubMed ID: 33887713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-decorated carbon nanostructures for the selective capture of carbon dioxide.
    Koo J; Bae H; Kang L; Huang B; Lee H
    Phys Chem Chem Phys; 2016 Oct; 18(42):29086-29091. PubMed ID: 27711490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride.
    Oh Y; Le VD; Maiti UN; Hwang JO; Park WJ; Lim J; Lee KE; Bae YS; Kim YH; Kim SO
    ACS Nano; 2015 Sep; 9(9):9148-57. PubMed ID: 26267150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical insight into a feasible strategy for the fabrication of borophane.
    Qin G; Du A; Sun Q
    Phys Chem Chem Phys; 2018 Jun; 20(23):16216-16221. PubMed ID: 29863205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-doped borophene catalysts with engineered defects for CO
    Singh NK; Kumar P; Yadav A; Srivastava VC
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):895-905. PubMed ID: 37898073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principle investigation of CO, CH
    Wang C; Gao C; Hou J; Duan Q
    J Mol Model; 2022 Jun; 28(7):196. PubMed ID: 35729364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO2 capture and separation from N2/CH4 mixtures by Co@B8/Co@B8(-) and M@B9/M@B9(-) (M = Ir, Rh, Ru) clusters: a theoretical study.
    Wang W; Zhang X; Li P; Sun Q; Li Z; Ren C; Guo C
    J Phys Chem A; 2015 Jan; 119(4):796-805. PubMed ID: 25594368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Could Borophene Be Used as a Promising Anode Material for High-Performance Lithium Ion Battery?
    Zhang Y; Wu ZF; Gao PF; Zhang SL; Wen YH
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22175-81. PubMed ID: 27487298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Screening of Metal-Organic Frameworks for CO
    Li S; Chung YG; Snurr RQ
    Langmuir; 2016 Oct; 32(40):10368-10376. PubMed ID: 27627635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.