These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28537253)

  • 1. A synthetic biochemistry platform for cell free production of monoterpenes from glucose.
    Korman TP; Opgenorth PH; Bowie JU
    Nat Commun; 2017 May; 8():15526. PubMed ID: 28537253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A synthetic biochemistry module for production of bio-based chemicals from glucose.
    Opgenorth PH; Korman TP; Bowie JU
    Nat Chem Biol; 2016 Jun; 12(6):393-5. PubMed ID: 27065234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a monoterpene synthase from Paeonia lactiflora producing α-pinene as its single product.
    Ma X; Guo J; Ma Y; Jin B; Zhan Z; Yuan Y; Huang L
    Biotechnol Lett; 2016 Jul; 38(7):1213-9. PubMed ID: 27053081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mono and diterpene production in Escherichia coli.
    Reiling KK; Yoshikuni Y; Martin VJ; Newman J; Bohlmann J; Keasling JD
    Biotechnol Bioeng; 2004 Jul; 87(2):200-12. PubMed ID: 15236249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis and production of sabinene: current state and perspectives.
    Cao Y; Zhang H; Liu H; Liu W; Zhang R; Xian M; Liu H
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1535-1544. PubMed ID: 29264773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase.
    Ignea C; Pontini M; Maffei ME; Makris AM; Kampranis SC
    ACS Synth Biol; 2014 May; 3(5):298-306. PubMed ID: 24847684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial Production of Pinene by a Laboratory-Evolved Pinene-Synthase.
    Tashiro M; Kiyota H; Kawai-Noma S; Saito K; Ikeuchi M; Iijima Y; Umeno D
    ACS Synth Biol; 2016 Sep; 5(9):1011-20. PubMed ID: 27247193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-Free Synthetic Biology for Pathway Prototyping.
    Karim AS; Jewett MC
    Methods Enzymol; 2018; 608():31-57. PubMed ID: 30173768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial production of sabinene--a new terpene-based precursor of advanced biofuel.
    Zhang H; Liu Q; Cao Y; Feng X; Zheng Y; Zou H; Liu H; Yang J; Xian M
    Microb Cell Fact; 2014 Feb; 13():20. PubMed ID: 24512040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice terpene synthase 20 (OsTPS20) plays an important role in producing terpene volatiles in response to abiotic stresses.
    Lee GW; Lee S; Chung MS; Jeong YS; Chung BY
    Protoplasma; 2015 Jul; 252(4):997-1007. PubMed ID: 25430981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic Biochemistry: The Bio-inspired Cell-Free Approach to Commodity Chemical Production.
    Bowie JU; Sherkhanov S; Korman TP; Valliere MA; Opgenorth PH; Liu H
    Trends Biotechnol; 2020 Jul; 38(7):766-778. PubMed ID: 31983463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heteromeric Geranyl(geranyl) Diphosphate Synthase Is Involved in Monoterpene Biosynthesis in Arabidopsis Flowers.
    Chen Q; Fan D; Wang G
    Mol Plant; 2015 Sep; 8(9):1434-7. PubMed ID: 25958235
    [No Abstract]   [Full Text] [Related]  

  • 13. An automated pipeline for the screening of diverse monoterpene synthase libraries.
    Leferink NGH; Dunstan MS; Hollywood KA; Swainston N; Currin A; Jervis AJ; Takano E; Scrutton NS
    Sci Rep; 2019 Aug; 9(1):11936. PubMed ID: 31417136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Toolbox for Diverse Oxyfunctionalisation of Monoterpenes.
    Hernandez-Ortega A; Vinaixa M; Zebec Z; Takano E; Scrutton NS
    Sci Rep; 2018 Sep; 8(1):14396. PubMed ID: 30258114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species.
    Aharoni A; Giri AP; Verstappen FW; Bertea CM; Sevenier R; Sun Z; Jongsma MA; Schwab W; Bouwmeester HJ
    Plant Cell; 2004 Nov; 16(11):3110-31. PubMed ID: 15522848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards synthesis of monoterpenes and derivatives using synthetic biology.
    Zebec Z; Wilkes J; Jervis AJ; Scrutton NS; Takano E; Breitling R
    Curr Opin Chem Biol; 2016 Oct; 34():37-43. PubMed ID: 27315341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of synthetic biology to elucidation of plant mono-, sesqui-, and diterpenoid metabolism.
    Kitaoka N; Lu X; Yang B; Peters RJ
    Mol Plant; 2015 Jan; 8(1):6-16. PubMed ID: 25578268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum.
    Kang MK; Eom JH; Kim Y; Um Y; Woo HM
    Biotechnol Lett; 2014 Oct; 36(10):2069-77. PubMed ID: 24930112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Synthesis of Myrcene by Metabolically Engineered Escherichia coli.
    Kim EM; Eom JH; Um Y; Kim Y; Woo HM
    J Agric Food Chem; 2015 May; 63(18):4606-12. PubMed ID: 25909988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The diversification of terpene emissions in Mediterranean oaks: lessons from a study of Quercus suber, Quercus canariensis and its hybrid Quercus afares.
    Welter S; Bracho-Nuñez A; Mir C; Zimmer I; Kesselmeier J; Lumaret R; Schnitzler JP; Staudt M
    Tree Physiol; 2012 Sep; 32(9):1082-91. PubMed ID: 22848089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.