These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 28537259)
1. The interfacial structure of water droplets in a hydrophobic liquid. Smolentsev N; Smit WJ; Bakker HJ; Roke S Nat Commun; 2017 May; 8():15548. PubMed ID: 28537259 [TBL] [Abstract][Full Text] [Related]
2. Water Structure at the Hydrophobic Nanodroplet Surface Revealed by Vibrational Sum Frequency Scattering Using Isotopic Dilution. Pullanchery S; Kulik S; Roke S J Phys Chem B; 2022 Apr; 126(16):3186-3192. PubMed ID: 35417164 [TBL] [Abstract][Full Text] [Related]
3. TinyLev acoustically levitated water: Direct observation of collective, inter-droplet effects through morphological and thermal analysis of multiple droplets. McElligott A; Guerra A; Wood MJ; Rey AD; Kietzig AM; Servio P J Colloid Interface Sci; 2022 Aug; 619():84-95. PubMed ID: 35378478 [TBL] [Abstract][Full Text] [Related]
4. Dependence of homogeneous crystal nucleation in water droplets on their radii and its implication for modeling the formation of ice particles in cirrus clouds. Djikaev YS; Ruckenstein E Phys Chem Chem Phys; 2017 Aug; 19(30):20075-20081. PubMed ID: 28725886 [TBL] [Abstract][Full Text] [Related]
5. Ice and water droplets on graphite: a comparison of quantum and classical simulations. Ramírez R; Singh JK; Müller-Plathe F; Böhm MC J Chem Phys; 2014 Nov; 141(20):204701. PubMed ID: 25429951 [TBL] [Abstract][Full Text] [Related]
6. The interfacial tension of nanoscopic oil droplets in water is hardly affected by SDS surfactant. de Aguiar HB; de Beer AG; Strader ML; Roke S J Am Chem Soc; 2010 Feb; 132(7):2122-3. PubMed ID: 20121125 [TBL] [Abstract][Full Text] [Related]
7. Charge transfer across C-H⋅⋅⋅O hydrogen bonds stabilizes oil droplets in water. Pullanchery S; Kulik S; Rehl B; Hassanali A; Roke S Science; 2021 Dec; 374(6573):1366-1370. PubMed ID: 34882471 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of water interacting with interfaces, molecules, and ions. Fayer MD Acc Chem Res; 2012 Jan; 45(1):3-14. PubMed ID: 21417263 [TBL] [Abstract][Full Text] [Related]
9. Formation and surface-stabilizing contributions to bare nanoemulsions created with negligible surface charge. Carpenter AP; Tran E; Altman RM; Richmond GL Proc Natl Acad Sci U S A; 2019 May; 116(19):9214-9219. PubMed ID: 31019075 [TBL] [Abstract][Full Text] [Related]
10. Scanning microbeam small-angle X-ray diffraction study of interfacial heterogeneous crystallization of fat crystals in oil-in-water emulsion droplets. Arima S; Ueno S; Ogawa A; Sato K Langmuir; 2009 Sep; 25(17):9777-84. PubMed ID: 19588887 [TBL] [Abstract][Full Text] [Related]
11. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Sellberg JA; Huang C; McQueen TA; Loh ND; Laksmono H; Schlesinger D; Sierra RG; Nordlund D; Hampton CY; Starodub D; DePonte DP; Beye M; Chen C; Martin AV; Barty A; Wikfeldt KT; Weiss TM; Caronna C; Feldkamp J; Skinner LB; Seibert MM; Messerschmidt M; Williams GJ; Boutet S; Pettersson LG; Bogan MJ; Nilsson A Nature; 2014 Jun; 510(7505):381-4. PubMed ID: 24943953 [TBL] [Abstract][Full Text] [Related]
12. Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid. Tong Y; Kampfrath T; Campen RK Phys Chem Chem Phys; 2016 Jul; 18(27):18424-30. PubMed ID: 27339861 [TBL] [Abstract][Full Text] [Related]
13. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates. Knopf DA; Rigg YJ J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213 [TBL] [Abstract][Full Text] [Related]
14. Toward vibrational dynamics at liquid-liquid and nano-interfaces: time-resolved sum-frequency scattering. Scheu R; Roke S J Phys Chem B; 2014 Mar; 118(12):3366-71. PubMed ID: 24588308 [TBL] [Abstract][Full Text] [Related]
15. A physically constrained classical description of the homogeneous nucleation of ice in water. Koop T; Murray BJ J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369 [TBL] [Abstract][Full Text] [Related]
16. Effects of interfaces on structure and dynamics of water droplets on a graphene surface: A molecular dynamics study. Maurya M; Metya AK; Singh JK; Saito S J Chem Phys; 2021 Apr; 154(16):164704. PubMed ID: 33940844 [TBL] [Abstract][Full Text] [Related]
17. How Low Can You Go? Molecular Details of Low-Charge Nanoemulsion Surfaces. Carpenter AP; Altman RM; Tran E; Richmond GL J Phys Chem B; 2020 May; 124(20):4234-4245. PubMed ID: 32378899 [TBL] [Abstract][Full Text] [Related]
18. Dynamic Duo: Vibrational Sum Frequency Scattering Investigation of pH-Switchable Carboxylic Acid/Carboxylate Surfactants on Nanodroplet Surfaces. Foster MJ; Carpenter AP; Richmond GL J Phys Chem B; 2021 Aug; 125(33):9629-9640. PubMed ID: 34402616 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization of water and surfactant AOT at nanoemulsion surfaces. Hensel JK; Carpenter AP; Ciszewski RK; Schabes BK; Kittredge CT; Moore FG; Richmond GL Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13351-13356. PubMed ID: 28760977 [TBL] [Abstract][Full Text] [Related]