These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 28537264)

  • 1. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions.
    Xu C; Jiao C; Sun H; Cai X; Wang X; Ge C; Zheng Y; Liu W; Sun X; Xu Y; Deng J; Zhang Z; Huang S; Dai S; Mou B; Wang Q; Fei Z; Wang Q
    Nat Commun; 2017 May; 8():15275. PubMed ID: 28537264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits.
    Cai X; Sun X; Xu C; Sun H; Wang X; Ge C; Zhang Z; Wang Q; Fei Z; Jiao C; Wang Q
    Nat Commun; 2021 Dec; 12(1):7246. PubMed ID: 34903739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Spinach Sex Chromosomes with Sugar Beet Autosomes Reveals Extensive Synteny and Low Recombination at the Male-Determining Locus.
    Takahata S; Yago T; Iwabuchi K; Hirakawa H; Suzuki Y; Onodera Y
    J Hered; 2016; 107(7):679-685. PubMed ID: 27563071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into spinach domestication from genome sequences of two wild spinach progenitors, Spinacia turkestanica and Spinacia tetrandra.
    She H; Liu Z; Xu Z; Zhang H; Wu J; Wang X; Cheng F; Charlesworth D; Qian W
    New Phytol; 2024 Jul; 243(1):477-494. PubMed ID: 38715078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris).
    Dohm JC; Minoche AE; Holtgräwe D; Capella-Gutiérrez S; Zakrzewski F; Tafer H; Rupp O; Sörensen TR; Stracke R; Reinhardt R; Goesmann A; Kraft T; Schulz B; Stadler PF; Schmidt T; Gabaldón T; Lehrach H; Weisshaar B; Himmelbauer H
    Nature; 2014 Jan; 505(7484):546-9. PubMed ID: 24352233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative chloroplast genome analyses of cultivated spinach and two wild progenitors shed light on the phylogenetic relationships and variation.
    She H; Liu Z; Xu Z; Zhang H; Cheng F; Wu J; Wang X; Qian W
    Sci Rep; 2022 Jan; 12(1):856. PubMed ID: 35039603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spinach YY genome reveals sex chromosome evolution, domestication, and introgression history of the species.
    Ma X; Yu L; Fatima M; Wadlington WH; Hulse-Kemp AM; Zhang X; Zhang S; Xu X; Wang J; Huang H; Lin J; Deng B; Liao Z; Yang Z; Ma Y; Tang H; Van Deynze A; Ming R
    Genome Biol; 2022 Mar; 23(1):75. PubMed ID: 35255946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular insights into the non-recombining nature of the spinach male-determining region.
    Kudoh T; Takahashi M; Osabe T; Toyoda A; Hirakawa H; Suzuki Y; Ohmido N; Onodera Y
    Mol Genet Genomics; 2018 Apr; 293(2):557-568. PubMed ID: 29222702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo and comparative transcriptome analysis of cultivated and wild spinach.
    Xu C; Jiao C; Zheng Y; Sun H; Liu W; Cai X; Wang X; Liu S; Xu Y; Mou B; Dai S; Fei Z; Wang Q
    Sci Rep; 2015 Dec; 5():17706. PubMed ID: 26635144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Newly developed SSR markers reveal genetic diversity and geographical clustering in spinach (Spinacia oleracea).
    Göl Ş; Göktay M; Allmer J; Doğanlar S; Frary A
    Mol Genet Genomics; 2017 Aug; 292(4):847-855. PubMed ID: 28386640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Diversity, Structure, and Selective Sweeps in
    Gyawali S; Bhattarai G; Shi A; Kik C; du Toit LJ
    Front Genet; 2021; 12():740437. PubMed ID: 34956311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly.
    Yang L; Koo DH; Li Y; Zhang X; Luan F; Havey MJ; Jiang J; Weng Y
    Plant J; 2012 Sep; 71(6):895-906. PubMed ID: 22487099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SpinachBase: a central portal for spinach genomics.
    Collins K; Zhao K; Jiao C; Xu C; Cai X; Wang X; Ge C; Dai S; Wang Q; Wang Q; Fei Z; Zheng Y
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31211398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an X-specific marker and identification of YY individuals in spinach.
    Wadlington WH; Ming R
    Theor Appl Genet; 2018 Sep; 131(9):1987-1994. PubMed ID: 29971471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L.
    Menzel G; Dechyeva D; Keller H; Lange C; Himmelbauer H; Schmidt T
    Chromosome Res; 2006; 14(8):831-44. PubMed ID: 17171577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spinach genome assembly with remarkable completeness, and its use for rapid identification of candidate genes for agronomic traits.
    Hirakawa H; Toyoda A; Itoh T; Suzuki Y; Nagano AJ; Sugiyama S; Onodera Y
    DNA Res; 2021 Jun; 28(3):. PubMed ID: 34142133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palaeohexaploid ancestry for Caryophyllales inferred from extensive gene-based physical and genetic mapping of the sugar beet genome (Beta vulgaris).
    Dohm JC; Lange C; Holtgräwe D; Sörensen TR; Borchardt D; Schulz B; Lehrach H; Weisshaar B; Himmelbauer H
    Plant J; 2012 May; 70(3):528-40. PubMed ID: 22211633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide simple sequence repeats (SSR) markers discovered from whole-genome sequence comparisons of multiple spinach accessions.
    Bhattarai G; Shi A; Kandel DR; Solís-Gracia N; da Silva JA; Avila CA
    Sci Rep; 2021 May; 11(1):9999. PubMed ID: 33976335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea).
    Shi A; Mou B
    Genome; 2016 Aug; 59(8):581-8. PubMed ID: 27490441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a high-density genetic map and the X/Y sex-determining gene mapping in spinach based on large-scale markers developed by specific-locus amplified fragment sequencing (SLAF-seq).
    Qian W; Fan G; Liu D; Zhang H; Wang X; Wu J; Xu Z
    BMC Genomics; 2017 Apr; 18(1):276. PubMed ID: 28376721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.