BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28537268)

  • 1. Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition.
    Shishkova E; Zeng H; Liu F; Kwiecien NW; Hebert AS; Coon JJ; Xu W
    Nat Commun; 2017 May; 8():15571. PubMed ID: 28537268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hypermethylation strategy utilized by enhancer-bound CARM1 to promote estrogen receptor α-dependent transcriptional activation and breast carcinogenesis.
    Peng BL; Li WJ; Ding JC; He YH; Ran T; Xie BL; Wang ZR; Shen HF; Xiao RQ; Gao WW; Ye TY; Gao X; Liu W
    Theranostics; 2020; 10(8):3451-3473. PubMed ID: 32206101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CARM1/PRMT4: Making Its Mark beyond Its Function as a Transcriptional Coactivator.
    Suresh S; Huard S; Dubois T
    Trends Cell Biol; 2021 May; 31(5):402-417. PubMed ID: 33485722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and biochemical evaluation of bisubstrate inhibitors of protein arginine N-methyltransferases PRMT1 and CARM1 (PRMT4).
    Gunnell EA; Al-Noori A; Muhsen U; Davies CC; Dowden J; Dreveny I
    Biochem J; 2020 Feb; 477(4):787-800. PubMed ID: 32011657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth.
    Li WJ; He YH; Yang JJ; Hu GS; Lin YA; Ran T; Peng BL; Xie BL; Huang MF; Gao X; Huang HH; Zhu HH; Ye F; Liu W
    Nat Commun; 2021 Mar; 12(1):1946. PubMed ID: 33782401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small molecule inhibitors that discriminate between protein arginine N-methyltransferases PRMT1 and CARM1.
    Dowden J; Pike RA; Parry RV; Hong W; Muhsen UA; Ward SG
    Org Biomol Chem; 2011 Oct; 9(22):7814-21. PubMed ID: 21952734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O-GlcNAcylation of co-activator-associated arginine methyltransferase 1 regulates its protein substrate specificity.
    Charoensuksai P; Kuhn P; Wang L; Sherer N; Xu W
    Biochem J; 2015 Mar; 466(3):587-99. PubMed ID: 25585345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17.
    Selvi BR; Batta K; Kishore AH; Mantelingu K; Varier RA; Balasubramanyam K; Pradhan SK; Dasgupta D; Sriram S; Agrawal S; Kundu TK
    J Biol Chem; 2010 Mar; 285(10):7143-52. PubMed ID: 20022955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors.
    Cura V; Marechal N; Troffer-Charlier N; Strub JM; van Haren MJ; Martin NI; Cianférani S; Bonnefond L; Cavarelli J
    FEBS J; 2017 Jan; 284(1):77-96. PubMed ID: 27879050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate profiling of PRMT1 reveals amino acid sequences that extend beyond the "RGG" paradigm.
    Wooderchak WL; Zang T; Zhou ZS; Acuña M; Tahara SM; Hevel JM
    Biochemistry; 2008 Sep; 47(36):9456-66. PubMed ID: 18700728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1.
    Schurter BT; Koh SS; Chen D; Bunick GJ; Harp JM; Hanson BL; Henschen-Edman A; Mackay DR; Stallcup MR; Aswad DW
    Biochemistry; 2001 May; 40(19):5747-56. PubMed ID: 11341840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions.
    Feng Y; Maity R; Whitelegge JP; Hadjikyriacou A; Li Z; Zurita-Lopez C; Al-Hadid Q; Clark AT; Bedford MT; Masson JY; Clarke SG
    J Biol Chem; 2013 Dec; 288(52):37010-25. PubMed ID: 24247247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PELP1 oncogenic functions involve CARM1 regulation.
    Mann M; Cortez V; Vadlamudi R
    Carcinogenesis; 2013 Jul; 34(7):1468-75. PubMed ID: 23486015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric assay of CARM1 activity using a FRET-based fluorescent probe.
    Ohta Y; Wakita H; Kawaguchi M; Ieda N; Osada S; Nakagawa H
    Bioorg Med Chem Lett; 2019 Nov; 29(22):126728. PubMed ID: 31607607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Understanding Molecular Recognition between PRMTs and their Substrates.
    Price OM; Hevel JM
    Curr Protein Pept Sci; 2020; 21(7):713-724. PubMed ID: 31976831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing.
    Cheng D; Côté J; Shaaban S; Bedford MT
    Mol Cell; 2007 Jan; 25(1):71-83. PubMed ID: 17218272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automethylation of CARM1 allows coupling of transcription and mRNA splicing.
    Kuhn P; Chumanov R; Wang Y; Ge Y; Burgess RR; Xu W
    Nucleic Acids Res; 2011 Apr; 39(7):2717-26. PubMed ID: 21138967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Insights into Ternary Complex Formation of Human CARM1 with Various Substrates.
    Boriack-Sjodin PA; Jin L; Jacques SL; Drew A; Sneeringer C; Scott MP; Moyer MP; Ribich S; Moradei O; Copeland RA
    ACS Chem Biol; 2016 Mar; 11(3):763-71. PubMed ID: 26551522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual Screening with a Structure-Based Pharmacophore Model to Identify Small-Molecule Inhibitors of CARM1.
    Ran T; Li W; Peng B; Xie B; Lu T; Lu S; Liu W
    J Chem Inf Model; 2019 Jan; 59(1):522-534. PubMed ID: 30607947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CARM1 Preferentially Methylates H3R17 over H3R26 through a Random Kinetic Mechanism.
    Jacques SL; Aquino KP; Gureasko J; Boriack-Sjodin PA; Porter Scott M; Copeland RA; Riera TV
    Biochemistry; 2016 Mar; 55(11):1635-44. PubMed ID: 26848779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.