These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
872 related articles for article (PubMed ID: 28537286)
21. Effects of tensile strain and finite size on thermal conductivity in monolayer WSe Yuan K; Zhang X; Li L; Tang D Phys Chem Chem Phys; 2018 Dec; 21(1):468-477. PubMed ID: 30534676 [TBL] [Abstract][Full Text] [Related]
22. Biaxial Tensile Strain-Induced Enhancement of Thermoelectric Efficiency of Chen SB; Liu G; Yan WJ; Hu CE; Chen XR; Geng HY Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009989 [TBL] [Abstract][Full Text] [Related]
23. Born effective charge removed anomalous temperature dependence of lattice thermal conductivity in monolayer GeC. Guo SD; Guo XS; Dong J J Phys Condens Matter; 2019 Mar; 31(12):125701. PubMed ID: 30630139 [TBL] [Abstract][Full Text] [Related]
24. Thermal conductivity of graphene under biaxial strain: an analysis of spectral phonon properties. K V S D; Kannam SK; Sathian SP Nanotechnology; 2020 Aug; 31(34):345703. PubMed ID: 32369790 [TBL] [Abstract][Full Text] [Related]
25. Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene. Sun Z; Yuan K; Zhang X; Qin G; Gong X; Tang D Phys Chem Chem Phys; 2019 Jul; 21(28):15647-15655. PubMed ID: 31268444 [TBL] [Abstract][Full Text] [Related]
26. Pressure tuning of the thermal conductivity of gallium arsenide from first-principles calculations. Sun Z; Yuan K; Zhang X; Tang D Phys Chem Chem Phys; 2018 Dec; 20(48):30331-30339. PubMed ID: 30488067 [TBL] [Abstract][Full Text] [Related]
27. The important role of strain on phonon hydrodynamics in diamond-like bi-layer graphene. Hu Y; Li D; Yin Y; Li S; Ding G; Zhou H; Zhang G Nanotechnology; 2020 Aug; 31(33):335711. PubMed ID: 32353835 [TBL] [Abstract][Full Text] [Related]
28. Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP Wei L; Lv X; Yang Y; Xu J; Yu H; Zhang H; Wang X; Liu B; Zhang C; Zhou J Inorg Chem; 2019 Apr; 58(7):4320-4327. PubMed ID: 30848900 [TBL] [Abstract][Full Text] [Related]
29. Thermal conductivity of biaxial-strained MoS2: sensitive strain dependence and size dependent reduction rate. Zhu L; Zhang T; Sun Z; Li J; Chen G; Yang SA Nanotechnology; 2015 Nov; 26(46):465707. PubMed ID: 26511672 [TBL] [Abstract][Full Text] [Related]
30. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Qin G; Yan QB; Qin Z; Yue SY; Hu M; Su G Phys Chem Chem Phys; 2015 Feb; 17(7):4854-8. PubMed ID: 25594447 [TBL] [Abstract][Full Text] [Related]
31. Strain-tunable lattice thermal conductivity of the Janus PtSTe monolayer. Pan L; Carrete J; Wang Z J Phys Condens Matter; 2021 Oct; 34(1):. PubMed ID: 34571499 [TBL] [Abstract][Full Text] [Related]
33. Significant enhancement of lattice thermal conductivity of monolayer AlN under bi-axial strain: a first principles study. Banerjee A; Das BK; Chattopadhyay KK Phys Chem Chem Phys; 2022 Jul; 24(26):16065-16074. PubMed ID: 35735192 [TBL] [Abstract][Full Text] [Related]
34. The first-principles and BTE investigation of phonon transport in 1T-TiSe Wang ZL; Chen G; Zhang X; Tang D Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842 [TBL] [Abstract][Full Text] [Related]
35. Thickness-Dependent Thermal Conductivity and Phonon Mean Free Path Distribution in Single-Crystalline Barium Titanate. Negi A; Rodriguez A; Zhang X; Comstock AH; Yang C; Sun D; Jiang X; Kumah D; Hu M; Liu J Adv Sci (Weinh); 2023 Jul; 10(19):e2301273. PubMed ID: 37092575 [TBL] [Abstract][Full Text] [Related]
36. Anisotropic thermal transport in Weyl semimetal TaAs: a first principles calculation. Ouyang T; Xiao H; Tang C; Hu M; Zhong J Phys Chem Chem Phys; 2016 Jun; 18(25):16709-14. PubMed ID: 27271203 [TBL] [Abstract][Full Text] [Related]
37. Effect of High Order Phonon Scattering on the Thermal Conductivity and Its Response to Strain of a Penta-NiN Zhang C; Sun J; Shen Y; Kang W; Wang Q J Phys Chem Lett; 2022 Jun; 13(25):5734-5741. PubMed ID: 35713616 [TBL] [Abstract][Full Text] [Related]
38. First-principles study of thermal transport in nitrogenated holey graphene. Ouyang T; Xiao H; Tang C; Zhang X; Hu M; Zhong J Nanotechnology; 2017 Jan; 28(4):045709. PubMed ID: 27997371 [TBL] [Abstract][Full Text] [Related]
39. Anharmonic phonon frequency and ultralow lattice thermal conductivity in β-Cu Zhang W; Zheng C; Dong Y; Yang JY; Liu L Phys Chem Chem Phys; 2020 Dec; 22(48):28086-28092. PubMed ID: 33289745 [TBL] [Abstract][Full Text] [Related]
40. Superhigh flexibility and out-of-plane piezoelectricity together with strong anharmonic phonon scattering induced extremely low lattice thermal conductivity in hexagonal buckled CdX (X Mohanta MK; Rawat A; Jena N; Ahammed R; De Sarkar A J Phys Condens Matter; 2020 Jun; 32(35):. PubMed ID: 32340009 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]