These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Kaltsoyannis N Inorg Chem; 2013 Apr; 52(7):3407-13. PubMed ID: 22668004 [TBL] [Abstract][Full Text] [Related]
3. Covalency in Actinide Compounds. Pace KA; Klepov VV; Berseneva AA; Zur Loye HC Chemistry; 2021 Apr; 27(19):5835-5841. PubMed ID: 33283323 [TBL] [Abstract][Full Text] [Related]
4. Uncovering Heavy Actinide Covalency: Implications for Minor Actinide Partitioning. Chandrasekar A; Ghanty TK Inorg Chem; 2019 Mar; 58(6):3744-3753. PubMed ID: 30821454 [TBL] [Abstract][Full Text] [Related]
5. Relativistic Quantum Chemical Investigation of Actinide Covalency Measured by Electron Paramagnetic Resonance Spectroscopy. Birnoschi L; Oakley MS; McInnes EJL; Chilton NF J Am Chem Soc; 2024 May; 146(21):14660-14671. PubMed ID: 38753552 [TBL] [Abstract][Full Text] [Related]
6. Quantum chemical topology and natural bond orbital analysis of M-O covalency in M(OC Berryman VEJ; Shephard JJ; Ochiai T; Price AN; Arnold PL; Parsons S; Kaltsoyannis N Phys Chem Chem Phys; 2020 Aug; 22(29):16804-16812. PubMed ID: 32662500 [TBL] [Abstract][Full Text] [Related]
7. On the Origin of Covalent Bonding in Heavy Actinides. Kelley MP; Su J; Urban M; Luckey M; Batista ER; Yang P; Shafer JC J Am Chem Soc; 2017 Jul; 139(29):9901-9908. PubMed ID: 28657317 [TBL] [Abstract][Full Text] [Related]
8. Evidence for the involvement of 5f orbitals in the bonding and reactivity of organometallic actinide compounds: thorium(IV) and uranium(IV) bis(hydrazonato) complexes. Cantat T; Graves CR; Jantunen KC; Burns CJ; Scott BL; Schelter EJ; Morris DE; Hay PJ; Kiplinger JL J Am Chem Soc; 2008 Dec; 130(51):17537-51. PubMed ID: 19053455 [TBL] [Abstract][Full Text] [Related]
10. Structure and bonding of [V(IV)O(acac)(2)] on the surface of AlF(3) as studied by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Nagarajan V; Müller B; Storcheva O; Köhler K; Pöppl A Phys Chem Chem Phys; 2009 Aug; 11(31):6849-54. PubMed ID: 19639160 [TBL] [Abstract][Full Text] [Related]
11. Enhancing Actinide(III) over Lanthanide(III) Selectivity through Hard-by-Soft Donor Substitution: Exploitation and Implication of Near-Degeneracy-Driven Covalency. Sadhu B; Dolg M Inorg Chem; 2019 Aug; 58(15):9738-9748. PubMed ID: 31343876 [TBL] [Abstract][Full Text] [Related]
12. Exceptional uranium(VI)-nitride triple bond covalency from Du J; Seed JA; Berryman VEJ; Kaltsoyannis N; Adams RW; Lee D; Liddle ST Nat Commun; 2021 Sep; 12(1):5649. PubMed ID: 34561448 [TBL] [Abstract][Full Text] [Related]
13. Use of (77)Se and (125)Te NMR Spectroscopy to Probe Covalency of the Actinide-Chalcogen Bonding in [Th(En){N(SiMe3)2}3](-) (E = Se, Te; n = 1, 2) and Their Oxo-Uranium(VI) Congeners. Smiles DE; Wu G; Hrobárik P; Hayton TW J Am Chem Soc; 2016 Jan; 138(3):814-25. PubMed ID: 26667146 [TBL] [Abstract][Full Text] [Related]
14. Electronic structures and bonding of the actinide halides An(TREN Wu QY; Wang CZ; Lan JH; Chai ZF; Shi WQ Dalton Trans; 2020 Nov; 49(44):15895-15902. PubMed ID: 33164010 [TBL] [Abstract][Full Text] [Related]
15. The role of the 5f valence orbitals of early actinides in chemical bonding. Vitova T; Pidchenko I; Fellhauer D; Bagus PS; Joly Y; Pruessmann T; Bahl S; Gonzalez-Robles E; Rothe J; Altmaier M; Denecke MA; Geckeis H Nat Commun; 2017 Jul; 8():16053. PubMed ID: 28681848 [TBL] [Abstract][Full Text] [Related]
16. Actinide-silicon multiradical bonding: infrared spectra and electronic structures of the Si(μ-X)AnF3 (An = Th, U; X = H, F) molecules. Hu HS; Wei F; Wang X; Andrews L; Li J J Am Chem Soc; 2014 Jan; 136(4):1427-37. PubMed ID: 24383992 [TBL] [Abstract][Full Text] [Related]
17. Multifrequency pulsed electron paramagnetic resonance on metalloproteins. Lyubenova S; Maly T; Zwicker K; Brandt U; Ludwig B; Prisner T Acc Chem Res; 2010 Feb; 43(2):181-9. PubMed ID: 19842617 [TBL] [Abstract][Full Text] [Related]
18. Complexation behavior of trivalent actinides and lanthanides with 1,10-phenanthroline-2,9-dicarboxylic acid based ligands: insight from density functional theory. Manna D; Ghanty TK Phys Chem Chem Phys; 2012 Aug; 14(31):11060-9. PubMed ID: 22763671 [TBL] [Abstract][Full Text] [Related]
19. Covalency of Trivalent Actinide Ions with Different Donor Ligands: Do Density Functional and Multiconfigurational Wavefunction Calculations Corroborate the Observed "Breaks"? Yu X; Sergentu DC; Feng R; Autschbach J Inorg Chem; 2021 Dec; 60(23):17744-17757. PubMed ID: 34747167 [TBL] [Abstract][Full Text] [Related]
20. Trends in covalency for d- and f-element metallocene dichlorides identified using chlorine K-edge X-ray absorption spectroscopy and time-dependent density functional theory. Kozimor SA; Yang P; Batista ER; Boland KS; Burns CJ; Clark DL; Conradson SD; Martin RL; Wilkerson MP; Wolfsberg LE J Am Chem Soc; 2009 Sep; 131(34):12125-36. PubMed ID: 19705913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]