BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28537588)

  • 1. Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide.
    Docherty JH; Peng J; Dominey AP; Thomas SP
    Nat Chem; 2017 Jan; 9(6):595-600. PubMed ID: 28537588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regiodivergent hydrosilylation, hydrogenation, [2π + 2π]-cycloaddition and C-H borylation using counterion activated earth-abundant metal catalysis.
    Agahi R; Challinor AJ; Dunne J; Docherty JH; Carter NB; Thomas SP
    Chem Sci; 2019 May; 10(19):5079-5084. PubMed ID: 31183059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Earth-Abundant Transition Metal Catalysts for Alkene Hydrosilylation and Hydroboration: Opportunities and Assessments.
    Obligacion JV; Chirik PJ
    Nat Rev Chem; 2018 May; 2(5):15-34. PubMed ID: 30740530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.
    Li YY; Yu SL; Shen WY; Gao JX
    Acc Chem Res; 2015 Sep; 48(9):2587-98. PubMed ID: 26301426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron- and Cobalt-Catalyzed Asymmetric Hydrofunctionalization of Alkenes and Alkynes.
    Guo J; Cheng Z; Chen J; Chen X; Lu Z
    Acc Chem Res; 2021 Jun; 54(11):2701-2716. PubMed ID: 34011145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations.
    Zhang T; Manna K; Lin W
    J Am Chem Soc; 2016 Mar; 138(9):3241-9. PubMed ID: 26864496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences.
    Gorgas N; Kirchner K
    Acc Chem Res; 2018 Jun; 51(6):1558-1569. PubMed ID: 29863334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroboration of Nitriles, Esters, and Carbonates Catalyzed by Simple Earth-Abundant Metal Triflate Salts.
    Thenarukandiyil R; Satheesh V; Shimon LJW; de Ruiter G
    Chem Asian J; 2021 Apr; 16(8):999-1006. PubMed ID: 33728809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.
    Manna K; Ji P; Lin Z; Greene FX; Urban A; Thacker NC; Lin W
    Nat Commun; 2016 Aug; 7():12610. PubMed ID: 27574182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence and Applications of Base Metals (Fe, Co, and Ni) in Hydroboration and Hydrosilylation.
    Tamang SR; Findlater M
    Molecules; 2019 Sep; 24(17):. PubMed ID: 31484333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of earth-abundant transition metals (Fe, Co, and Ni) as catalysts in unreactive chemical bond activations.
    Su B; Cao ZC; Shi ZJ
    Acc Chem Res; 2015 Mar; 48(3):886-96. PubMed ID: 25679917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enabling Two-Electron Pathways with Iron and Cobalt: From Ligand Design to Catalytic Applications.
    Arevalo R; Chirik PJ
    J Am Chem Soc; 2019 Jun; 141(23):9106-9123. PubMed ID: 31084022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes.
    Tondreau AM; Atienza CC; Weller KJ; Nye SA; Lewis KM; Delis JG; Chirik PJ
    Science; 2012 Feb; 335(6068):567-70. PubMed ID: 22301315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective hydroboration of unsaturated bonds by an easily accessible heterotopic cobalt catalyst.
    Li C; Song S; Li Y; Xu C; Luo Q; Guo Y; Wang X
    Nat Commun; 2021 Jun; 12(1):3813. PubMed ID: 34155208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts.
    Friedfeld MR; Shevlin M; Hoyt JM; Krska SW; Tudge MT; Chirik PJ
    Science; 2013 Nov; 342(6162):1076-80. PubMed ID: 24288328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Branched-Selective Alkene Hydroboration Catalyzed by Earth-Abundant Metals.
    Fan W; Li L; Zhang G
    J Org Chem; 2019 May; 84(10):5987-5996. PubMed ID: 31017441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in pincer-nickel catalyzed reactions.
    Arora V; Narjinari H; Nandi PG; Kumar A
    Dalton Trans; 2021 Mar; 50(10):3394-3428. PubMed ID: 33595564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manganese Complexes for (De)Hydrogenation Catalysis: A Comparison to Cobalt and Iron Catalysts.
    Kallmeier F; Kempe R
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):46-60. PubMed ID: 29065245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.