These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28537588)

  • 41. Ionic and Neutral Mechanisms for C-H Bond Silylation of Aromatic Heterocycles Catalyzed by Potassium tert-Butoxide.
    Banerjee S; Yang YF; Jenkins ID; Liang Y; Toutov AA; Liu WB; Schuman DP; Grubbs RH; Stoltz BM; Krenske EH; Houk KN; Zare RN
    J Am Chem Soc; 2017 May; 139(20):6880-6887. PubMed ID: 28462580
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Salicylaldimine-based metal-organic framework enabling highly active olefin hydrogenation with iron and cobalt catalysts.
    Manna K; Zhang T; Carboni M; Abney CW; Lin W
    J Am Chem Soc; 2014 Sep; 136(38):13182-5. PubMed ID: 25187995
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Silylation of C-H bonds in aromatic heterocycles by an Earth-abundant metal catalyst.
    Toutov AA; Liu WB; Betz KN; Fedorov A; Stoltz BM; Grubbs RH
    Nature; 2015 Feb; 518(7537):80-4. PubMed ID: 25652999
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid, Regioconvergent, Solvent-Free Alkene Hydrosilylation with a Cobalt Catalyst.
    Chen C; Hecht MB; Kavara A; Brennessel WW; Mercado BQ; Weix DJ; Holland PL
    J Am Chem Soc; 2015 Oct; 137(41):13244-7. PubMed ID: 26444496
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The recent development of efficient Earth-abundant transition-metal nanocatalysts.
    Wang D; Astruc D
    Chem Soc Rev; 2017 Feb; 46(3):816-854. PubMed ID: 28101543
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts.
    Han FS
    Chem Soc Rev; 2013 Jun; 42(12):5270-98. PubMed ID: 23460083
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly selective biaryl cross-coupling reactions between aryl halides and aryl Grignard reagents: a new catalyst combination of N-heterocyclic carbenes and iron, cobalt, and nickel fluorides.
    Hatakeyama T; Hashimoto S; Ishizuka K; Nakamura M
    J Am Chem Soc; 2009 Aug; 131(33):11949-63. PubMed ID: 19639999
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation.
    Hu MY; He Q; Fan SJ; Wang ZC; Liu LY; Mu YJ; Peng Q; Zhu SF
    Nat Commun; 2018 Jan; 9(1):221. PubMed ID: 29335560
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Emergence of Manganese-Based Carbonyl Hydrosilylation Catalysts.
    Trovitch RJ
    Acc Chem Res; 2017 Nov; 50(11):2842-2852. PubMed ID: 29120607
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ligand-Regulated Regiodivergent Hydrosilylation of Isoprene under Iron Catalysis.
    Kuai CS; Ji DW; Zhao CY; Liu H; Hu YC; Chen QA
    Angew Chem Int Ed Engl; 2020 Oct; 59(43):19115-19120. PubMed ID: 32619282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal-Free and Noble Metal-Free Heteroatom-Doped Nanostructured Carbons as Prospective Sustainable Electrocatalysts.
    Asefa T
    Acc Chem Res; 2016 Sep; 49(9):1873-83. PubMed ID: 27599362
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts.
    de Almeida LD; Wang H; Junge K; Cui X; Beller M
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):550-565. PubMed ID: 32668079
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphinite-iminopyridine iron catalysts for chemoselective alkene hydrosilylation.
    Peng D; Zhang Y; Du X; Zhang L; Leng X; Walter MD; Huang Z
    J Am Chem Soc; 2013 Dec; 135(51):19154-66. PubMed ID: 24304467
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inert C-H Bond Transformations Enabled by Organometallic Manganese Catalysis.
    Hu Y; Zhou B; Wang C
    Acc Chem Res; 2018 Mar; 51(3):816-827. PubMed ID: 29443496
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alkaline earths as main group reagents in molecular catalysis.
    Hill MS; Liptrot DJ; Weetman C
    Chem Soc Rev; 2016 Feb; 45(4):972-88. PubMed ID: 26797470
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using nature's blueprint to expand catalysis with Earth-abundant metals.
    Bullock RM; Chen JG; Gagliardi L; Chirik PJ; Farha OK; Hendon CH; Jones CW; Keith JA; Klosin J; Minteer SD; Morris RH; Radosevich AT; Rauchfuss TB; Strotman NA; Vojvodic A; Ward TR; Yang JY; Surendranath Y
    Science; 2020 Aug; 369(6505):. PubMed ID: 32792370
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organic synthesis with the most abundant transition metal-iron: from rust to multitasking catalysts.
    Rana S; Biswas JP; Paul S; Paik A; Maiti D
    Chem Soc Rev; 2021 Jan; 50(1):243-472. PubMed ID: 33399140
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines.
    Jagadeesh RV; Surkus AE; Junge H; Pohl MM; Radnik J; Rabeah J; Huan H; Schünemann V; Brückner A; Beller M
    Science; 2013 Nov; 342(6162):1073-6. PubMed ID: 24288327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.
    Qi W; Yan P; Su DS
    Acc Chem Res; 2018 Mar; 51(3):640-648. PubMed ID: 29446621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.