BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 28537595)

  • 1. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization.
    Niu J; Lunn DJ; Pusuluri A; Yoo JI; O'Malley MA; Mitragotri S; Soh HT; Hawker CJ
    Nat Chem; 2017 Jun; 9(6):537-545. PubMed ID: 28537595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytocompatible Polymer Grafting from Individual Living Cells by Atom-Transfer Radical Polymerization.
    Kim JY; Lee BS; Choi J; Kim BJ; Choi JY; Kang SM; Yang SH; Choi IS
    Angew Chem Int Ed Engl; 2016 Dec; 55(49):15306-15309. PubMed ID: 27862790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graft modification of lignin-based cellulose via enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization and free-radical coupling.
    Bao X; Fan X; Yu Y; Wang Q; Wang P; Yuan J
    Int J Biol Macromol; 2020 Feb; 144():267-278. PubMed ID: 31843604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PNIPAM grafted surfaces through ATRP and RAFT polymerization: Chemistry and bioadhesion.
    Conzatti G; Cavalie S; Combes C; Torrisani J; Carrere N; Tourrette A
    Colloids Surf B Biointerfaces; 2017 Mar; 151():143-155. PubMed ID: 27992845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell Engineering with Functional Poly(oxanorbornene) Block Copolymers.
    Church DC; Pokorski JK
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11379-11383. PubMed ID: 32281276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization.
    Moraes J; Ohno K; Maschmeyer T; Perrier S
    Chem Commun (Camb); 2013 Oct; 49(80):9077-88. PubMed ID: 23999877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalization of carbon nanotubes by combination of controlled radical polymerization and "grafting to" method.
    Abousalman-Rezvani Z; Eskandari P; Roghani-Mamaqani H; Salami-Kalajahi M
    Adv Colloid Interface Sci; 2020 Apr; 278():102126. PubMed ID: 32114292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.
    Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y
    Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes.
    Xu X; Huang X; Chang Y; Yu Y; Zhao J; Isahak N; Teng J; Qiao R; Peng H; Zhao CX; Davis TP; Fu C; Whittaker AK
    Biomacromolecules; 2021 Feb; 22(2):330-339. PubMed ID: 33305948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward living radical polymerization.
    Moad G; Rizzardo E; Thang SH
    Acc Chem Res; 2008 Sep; 41(9):1133-42. PubMed ID: 18700787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous bulk- and surface-initiated controlled radical polymerization from planar substrates.
    Turgman-Cohen S; Genzer J
    J Am Chem Soc; 2011 Nov; 133(44):17567-9. PubMed ID: 21978360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaches for Conjugating Tailor-Made Polymers to Proteins.
    Paeth M; Stapleton J; Dougherty ML; Fischesser H; Shepherd J; McCauley M; Falatach R; Page RC; Berberich JA; Konkolewicz D
    Methods Enzymol; 2017; 590():193-224. PubMed ID: 28411638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting chain transfer to polymer and branching in controlled radical polymerization of butyl acrylate.
    Reyes Y; Asua JM
    Macromol Rapid Commun; 2011 Jan; 32(1):63-7. PubMed ID: 21432971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grafting efficiency of synthetic polymers onto biomaterials: a comparative study of grafting-from versus grafting-to.
    Hansson S; Trouillet V; Tischer T; Goldmann AS; Carlmark A; Barner-Kowollik C; Malmström E
    Biomacromolecules; 2013 Jan; 14(1):64-74. PubMed ID: 23043441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyhomologation. A living C1 polymerization.
    Luo J; Shea KJ
    Acc Chem Res; 2010 Nov; 43(11):1420-33. PubMed ID: 20825177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing binding density of yeast cells by control of surface charge with allylamine grafting to ion modified polymer surfaces.
    Tran CTH; Kondyurin A; Chrzanowski W; Bilek MMM; McKenzie DR
    Colloids Surf B Biointerfaces; 2014 Oct; 122():537-544. PubMed ID: 25092587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization: Precision polymer synthesis via enzymatic catalysis.
    Wang X; An Z
    Methods Enzymol; 2019; 627():291-319. PubMed ID: 31630745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of surface-anchored DNA-polymer bioconjugates using reversible addition-fragmentation chain transfer polymerization.
    He P; He L
    Biomacromolecules; 2009 Jul; 10(7):1804-9. PubMed ID: 19425595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible addition-fragmentation chain transfer polymerization of N-isopropylacrylamide: a comparison between a conventional and a fast initiator.
    Bouchékif H; Narain R
    J Phys Chem B; 2007 Sep; 111(38):11120-6. PubMed ID: 17803302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct surface grafting of mesoporous silica nanoparticles with phospholipid choline-containing copolymers through chain transfer free radical polymerization and their controlled drug delivery.
    Huang L; Wu J; Liu M; Mao L; Huang H; Wan Q; Dai Y; Wen Y; Zhang X; Wei Y
    J Colloid Interface Sci; 2017 Dec; 508():396-404. PubMed ID: 28843929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.