These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28537617)

  • 21. Sandpaper as template for a robust superhydrophobic surface with self-cleaning and anti-snow/icing performances.
    Qing Y; Long C; An K; Hu C; Liu C
    J Colloid Interface Sci; 2019 Jul; 548():224-232. PubMed ID: 31004955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transparent nanostructured coatings with UV-shielding and superhydrophobicity properties.
    Wang T; Isimjan TT; Chen J; Rohani S
    Nanotechnology; 2011 Jul; 22(26):265708. PubMed ID: 21576801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.
    Su B; Li M; Lu Q
    Langmuir; 2010 Apr; 26(8):6048-52. PubMed ID: 20000363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A facile dip-coating process for preparing highly durable superhydrophobic surface with multi-scale structures on paint films.
    Cui Z; Yin L; Wang Q; Ding J; Chen Q
    J Colloid Interface Sci; 2009 Sep; 337(2):531-7. PubMed ID: 19552913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.
    Peng S; Tian D; Yang X; Deng W
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4831-41. PubMed ID: 24593862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability.
    Golovin K; Boban M; Mabry JM; Tuteja A
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11212-11223. PubMed ID: 28267319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.
    Li J; Jing Z; Zha F; Yang Y; Wang Q; Lei Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8868-77. PubMed ID: 24807195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioinspired Cavity Regulation on Superhydrophobic Spheres for Drag Reduction in an Aqueous Medium.
    Yao C; Zhang J; Xue Z; Yu K; Yu X; Yang X; Qu Q; Gan W; Wang J; Jiang L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4796-4803. PubMed ID: 33448779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness.
    Zhang Y; Ge D; Yang S
    J Colloid Interface Sci; 2014 Jun; 423():101-7. PubMed ID: 24703674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).
    Ahmmed KM; Patience C; Kietzig AM
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27411-27419. PubMed ID: 27649381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Durable Superhydrophobic Wood via One-Step Immersion in Composite Silane Solution.
    Ou J; Zhao G; Wang F; Li W; Lei S; Fang X; Siddiqui AR; Xia Y; Amirfazli A
    ACS Omega; 2021 Mar; 6(11):7266-7274. PubMed ID: 33778241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films.
    Lai Y; Lin C; Huang J; Zhuang H; Sun L; Nguyen T
    Langmuir; 2008 Apr; 24(8):3867-73. PubMed ID: 18312005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical stability, corrosion resistance of superhydrophobic steel and repairable durability of its slippery surface.
    Gao X; Guo Z
    J Colloid Interface Sci; 2018 Feb; 512():239-248. PubMed ID: 29073465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superhydrophobic copper tubes with possible flow enhancement and drag reduction.
    Shirtcliffe NJ; McHale G; Newton MI; Zhang Y
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1316-23. PubMed ID: 20355928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection.
    Ou J; Hu W; Xue M; Wang F; Li W
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3101-7. PubMed ID: 23496751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and physical properties of superhydrophobic papers.
    Yang H; Deng Y
    J Colloid Interface Sci; 2008 Sep; 325(2):588-93. PubMed ID: 18603258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drag Reduction of Anisotropic Superhydrophobic Surfaces Prepared by Laser Etching.
    Tuo Y; Zhang H; Rong W; Jiang S; Chen W; Liu X
    Langmuir; 2019 Aug; 35(34):11016-11022. PubMed ID: 31364849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Floatable Superhydrophobic Metallic Assembly for Aquatic Applications.
    Zhan Z; ElKabbash M; Cheng J; Zhang J; Singh S; Guo C
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48512-48517. PubMed ID: 31691554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drag Reduction Technology of Water Flow on Microstructured Surfaces: A Novel Perspective from Vortex Distributions and Densities.
    Liu C; Wang W; Hu X; Liu F
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.