These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 28538092)
61. Click Addition of a DNA Thread to the N-Termini of Peptides for Their Translocation through Solid-State Nanopores. Biswas S; Song W; Borges C; Lindsay S; Zhang P ACS Nano; 2015 Oct; 9(10):9652-64. PubMed ID: 26364915 [TBL] [Abstract][Full Text] [Related]
62. Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field. Freedman KJ; Haq SR; Edel JB; Jemth P; Kim MJ Sci Rep; 2013; 3():1638. PubMed ID: 23572157 [TBL] [Abstract][Full Text] [Related]
63. Kinetic Aspects of Surfactant-Induced Structural Changes of Proteins - Unsolved Problems of Two-State Model for Protein Denaturation -. Takeda K; Moriyama Y J Oleo Sci; 2015; 64(11):1143-58. PubMed ID: 26468232 [TBL] [Abstract][Full Text] [Related]
64. Investigation of Controllable Nanoscale Heat-Denatured Bovine Serum Albumin Films on Graphene. Zhou L; Wang K; Wu Z; Dong H; Sun H; Cheng X; Zhang HL; Zhou H; Jia C; Jin Q; Mao H; Coll JL; Zhao J Langmuir; 2016 Dec; 32(48):12623-12631. PubMed ID: 27934532 [TBL] [Abstract][Full Text] [Related]
65. Molecular calipers for highly precise and accurate measurements of single-protein mechanics. Wang Y; Hu X; Bu T; Hu C; Hu X; Li H Langmuir; 2014 Mar; 30(10):2761-7. PubMed ID: 24555779 [TBL] [Abstract][Full Text] [Related]
66. [Functionalization of aminomodified probes for atomic force microscopy]. Limanskiĭ AP Biofizika; 2006; 51(2):225-35. PubMed ID: 16637326 [TBL] [Abstract][Full Text] [Related]
67. Origin of mechanical strength of bovine carbonic anhydrase studied by molecular dynamics simulation. Ohta S; Alam MT; Arakawa H; Ikai A Biophys J; 2004 Dec; 87(6):4007-20. PubMed ID: 15377514 [TBL] [Abstract][Full Text] [Related]
68. Theoretical studies on key factors in DNA sequencing using atomically thin molybdenum disulfide nanopores. Liang L; Liu F; Kong Z; Shen JW; Wang H; Wang H; Li L Phys Chem Chem Phys; 2018 Nov; 20(45):28886-28893. PubMed ID: 30420980 [TBL] [Abstract][Full Text] [Related]
69. Nanopore Detector based analysis of single-molecule conformational kinetics and binding interactions. Winters-Hilt S BMC Bioinformatics; 2006 Sep; 7 Suppl 2(Suppl 2):S21. PubMed ID: 17118143 [TBL] [Abstract][Full Text] [Related]
70. Polymer translocation in solid-state nanopores: dependence of scaling behavior on pore dimensions and applied voltage. Edmonds CM; Hudiono YC; Ahmadi AG; Hesketh PJ; Nair S J Chem Phys; 2012 Feb; 136(6):065105. PubMed ID: 22360225 [TBL] [Abstract][Full Text] [Related]
71. Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore. Restrepo-Pérez L; Huang G; Bohländer PR; Worp N; Eelkema R; Maglia G; Joo C; Dekker C ACS Nano; 2019 Dec; 13(12):13668-13676. PubMed ID: 31536327 [TBL] [Abstract][Full Text] [Related]
72. Topological jamming of spontaneously knotted polyelectrolyte chains driven through a nanopore. Rosa A; Di Ventra M; Micheletti C Phys Rev Lett; 2012 Sep; 109(11):118301. PubMed ID: 23005684 [TBL] [Abstract][Full Text] [Related]
73. Immuno-atomic force microscopy of purple membrane. Müller DJ; Schoenenberger CA; Büldt G; Engel A Biophys J; 1996 Apr; 70(4):1796-802. PubMed ID: 8785339 [TBL] [Abstract][Full Text] [Related]
74. Diffusive dynamics of DNA unzipping in a nanopore. Stachiewicz A; Molski A J Comput Chem; 2016 Feb; 37(5):467-76. PubMed ID: 26519865 [TBL] [Abstract][Full Text] [Related]
75. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation. Asandei A; Schiopu I; Chinappi M; Seo CH; Park Y; Luchian T ACS Appl Mater Interfaces; 2016 May; 8(20):13166-79. PubMed ID: 27159806 [TBL] [Abstract][Full Text] [Related]
76. Effect of pH and surfactant on the protein: A perspective from theory and experiments. Srivastava R; Alam MS Int J Biol Macromol; 2018 Feb; 107(Pt B):1519-1527. PubMed ID: 29030191 [TBL] [Abstract][Full Text] [Related]
77. Measuring Force-Induced Dissociation Kinetics of Protein Complexes Using Single-Molecule Atomic Force Microscopy. Manibog K; Yen CF; Sivasankar S Methods Enzymol; 2017; 582():297-320. PubMed ID: 28062039 [TBL] [Abstract][Full Text] [Related]
78. The passage of homopolymeric RNA through small solid-state nanopores. van den Hout M; Skinner GM; Klijnhout S; Krudde V; Dekker NH Small; 2011 Aug; 7(15):2217-24. PubMed ID: 21638785 [TBL] [Abstract][Full Text] [Related]
79. A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity. Van der Verren SE; Van Gerven N; Jonckheere W; Hambley R; Singh P; Kilgour J; Jordan M; Wallace EJ; Jayasinghe L; Remaut H Nat Biotechnol; 2020 Dec; 38(12):1415-1420. PubMed ID: 32632300 [TBL] [Abstract][Full Text] [Related]
80. Single-molecule sensing inside stereo- and regio-defined hetero-nanopores. Liu W; Zhu Q; Yang CN; Fu YH; Zhang JC; Li MY; Yang ZL; Xin KL; Ma J; Winterhalter M; Ying YL; Long YT Nat Nanotechnol; 2024 Aug; ():. PubMed ID: 39164412 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]