These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28538153)

  • 1. New Continuum Approaches for Determining Protein-Induced Membrane Deformations.
    Argudo D; Bethel NP; Marcoline FV; Wolgemuth CW; Grabe M
    Biophys J; 2017 May; 112(10):2159-2172. PubMed ID: 28538153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuum descriptions of membranes and their interaction with proteins: Towards chemically accurate models.
    Argudo D; Bethel NP; Marcoline FV; Grabe M
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1619-34. PubMed ID: 26853937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Characterization of Protein-Lipid Interactions by Free Energy Simulation between Binary Bilayers.
    Park S; Yeom MS; Andersen OS; Pastor RW; Im W
    J Chem Theory Comput; 2019 Nov; 15(11):6491-6503. PubMed ID: 31560853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A continuum method for determining membrane protein insertion energies and the problem of charged residues.
    Choe S; Hecht KA; Grabe M
    J Gen Physiol; 2008 Jun; 131(6):563-73. PubMed ID: 18474636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gramicidin A Channel Formation Induces Local Lipid Redistribution II: A 3D Continuum Elastic Model.
    Sodt AJ; Beaven AH; Andersen OS; Im W; Pastor RW
    Biophys J; 2017 Mar; 112(6):1198-1213. PubMed ID: 28355547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.
    Harroun TA; Heller WT; Weiss TM; Yang L; Huang HW
    Biophys J; 1999 Jun; 76(6):3176-85. PubMed ID: 10354442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-mediated protein-protein interactions and connection to elastic models: a coarse-grained simulation analysis of gramicidin A association.
    Yoo J; Cui Q
    Biophys J; 2013 Jan; 104(1):128-38. PubMed ID: 23332065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A one-dimensional continuum elastic model for membrane-embedded gramicidin dimer dissociation.
    Stember JN; Andersen O
    PLoS One; 2011 Feb; 6(2):e15563. PubMed ID: 21326605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol.
    Lundbaek JA; Birn P; Hansen AJ; Søgaard R; Nielsen C; Girshman J; Bruno MJ; Tape SE; Egebjerg J; Greathouse DV; Mattice GL; Koeppe RE; Andersen OS
    J Gen Physiol; 2004 May; 123(5):599-621. PubMed ID: 15111647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gramicidin A Channel Formation Induces Local Lipid Redistribution I: Experiment and Simulation.
    Beaven AH; Maer AM; Sodt AJ; Rui H; Pastor RW; Andersen OS; Im W
    Biophys J; 2017 Mar; 112(6):1185-1197. PubMed ID: 28355546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing smectic liquid-crystal continuum models for elastic bilayer deformations.
    Lee KI; Pastor RW; Andersen OS; Im W
    Chem Phys Lipids; 2013 Apr; 169():19-26. PubMed ID: 23348553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime.
    Huang HW
    Biophys J; 1986 Dec; 50(6):1061-70. PubMed ID: 2432948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional stress field around a membrane protein: atomistic and coarse-grained simulation analysis of gramicidin A.
    Yoo J; Cui Q
    Biophys J; 2013 Jan; 104(1):117-27. PubMed ID: 23332064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The determinants of hydrophobic mismatch response for transmembrane helices.
    de Jesus AJ; Allen TW
    Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of the interactions between the first transmembrane segment of NS2 protein and a POPC lipid bilayer.
    Hung HM; Nguyen VP; Ngo ST; Nguyen MT
    Biophys Chem; 2016 Oct; 217():1-7. PubMed ID: 27455027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of the M2delta segment of the acetylcholine receptor with lipid bilayers: a continuum-solvent model study.
    Kessel A; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3687-95. PubMed ID: 14645060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane bending is critical for the stability of voltage sensor segments in the membrane.
    Callenberg KM; Latorraca NR; Grabe M
    J Gen Physiol; 2012 Jul; 140(1):55-68. PubMed ID: 22732310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.