These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 28538202)
1. Development of nanobiocatalysts through the immobilization of Pseudomonas fluorescens lipase for applications in efficient kinetic resolution of racemic compounds. Dwivedee BP; Bhaumik J; Rai SK; Laha JK; Banerjee UC Bioresour Technol; 2017 Sep; 239():464-471. PubMed ID: 28538202 [TBL] [Abstract][Full Text] [Related]
2. Immobilization of Lipase from Pseudomonas fluorescens on Porous Polyurea and Its Application in Kinetic Resolution of Racemic 1-Phenylethanol. Han H; Zhou Y; Li S; Wang Y; Kong XZ ACS Appl Mater Interfaces; 2016 Oct; 8(39):25714-25724. PubMed ID: 27618157 [TBL] [Abstract][Full Text] [Related]
3. Facile immobilization of Pseudomonas fluorescens lipase on polyaniline nanofibers (PANFs-PFL): A route to develop robust nanobiocatalyst. Dwivedee BP; Soni S; Laha JK; Banerjee UC Int J Biol Macromol; 2018 Nov; 119():8-14. PubMed ID: 30009899 [TBL] [Abstract][Full Text] [Related]
4. Tailoring a robust and recyclable nanobiocatalyst by immobilization of Pseudomonas fluorescens lipase on carbon nanofiber and its application in synthesis of enantiopure carboetomidate analogue. Dwivedee BP; Soni S; Bhimpuria R; Laha JK; Banerjee UC Int J Biol Macromol; 2019 Jul; 133():1299-1310. PubMed ID: 30940586 [TBL] [Abstract][Full Text] [Related]
5. Covalently immobilized lipase on aminoalkyl-, carboxy- and hydroxy-multi-wall carbon nanotubes in the enantioselective synthesis of Solketal esters. Zniszczoł A; Herman AP; Szymańska K; Mrowiec-Białoń J; Walczak KZ; Jarzębski A; Boncel S Enzyme Microb Technol; 2016 Jun; 87-88():61-9. PubMed ID: 27178796 [TBL] [Abstract][Full Text] [Related]
6. Alkaline lipase from Pseudomonas fluorescens non-covalently immobilised on pristine versus oxidised multi-wall carbon nanotubes as efficient and recyclable catalytic systems in the synthesis of Solketal esters. Boncel S; Zniszczoł A; Szymańska K; Mrowiec-Białoń J; Jarzębski A; Walczak KZ Enzyme Microb Technol; 2013 Sep; 53(4):263-70. PubMed ID: 23931692 [TBL] [Abstract][Full Text] [Related]
7. Lipase from Solvent-Tolerant Pseudomonas sp. DMVR46 Strain Adsorb on Multiwalled Carbon Nanotubes: Application for Enzymatic Biotransformation in Organic Solvents. Vrutika P; Datta M Appl Biochem Biotechnol; 2015 Nov; 177(6):1313-26. PubMed ID: 26329889 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support. Rios NS; Neto DMA; Dos Santos JCS; Fechine PBA; Fernández-Lafuente R; Gonçalves LRB Int J Biol Macromol; 2019 Aug; 134():936-945. PubMed ID: 31121223 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability. Rios NS; Mendez-Sanchez C; Arana-Peña S; Rueda N; Ortiz C; Gonçalves LRB; Fernandez-Lafuente R Biochim Biophys Acta Proteins Proteom; 2019 Sep; 1867(9):741-747. PubMed ID: 31202001 [TBL] [Abstract][Full Text] [Related]
10. Facile fabrication of a recyclable nanobiocatalyst: immobilization of Soni S; Dwivedee BP; Chand Banerjee U RSC Adv; 2018 Aug; 8(49):27763-27774. PubMed ID: 35542692 [TBL] [Abstract][Full Text] [Related]
12. Tailoring a stable and recyclable nanobiocatalyst by immobilization of surfactant treated Burkholderia cepacia lipase on polyaniline nanofibers for biocatalytic application. Soni S; Dwivedee BP; Banerjee UC Int J Biol Macromol; 2020 Oct; 161():573-586. PubMed ID: 32512104 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Enzymatic Performance of Immobilized Wang Q; Xiong J; Xu H; Sun W; Pan X; Cui S; Lv S; Zhang Y Molecules; 2024 Jun; 29(12):. PubMed ID: 38930986 [TBL] [Abstract][Full Text] [Related]
14. CALB Immobilized onto Magnetic Nanoparticles for Efficient Kinetic Resolution of Racemic Secondary Alcohols: Long-Term Stability and Reusability. Xing X; Jia JQ; Zhang JF; Zhou ZW; Li J; Wang N; Yu XQ Molecules; 2019 Jan; 24(3):. PubMed ID: 30704049 [TBL] [Abstract][Full Text] [Related]
15. Immobilization of lipase onto novel constructed polydopamine grafted multiwalled carbon nanotube impregnated with magnetic cobalt and its application in synthesis of fruit flavours. Asmat S; Anwer AH; Husain Q Int J Biol Macromol; 2019 Nov; 140():484-495. PubMed ID: 31408654 [TBL] [Abstract][Full Text] [Related]
16. Efficient Biodiesel Production Catalyzed by Nanobioconjugate of Lipase from Bartha-Vári JH; Moisă ME; Bencze LC; Irimie FD; Paizs C; Toșa MI Molecules; 2020 Feb; 25(3):. PubMed ID: 32028723 [TBL] [Abstract][Full Text] [Related]
17. Optimization of immobilization of Ameri A; Forootanfar H; Behnam B; Shakibaie M; Ameri A; Daneshpajooh M; Najafi A; Amirheidari B 3 Biotech; 2021 Jun; 11(6):260. PubMed ID: 33996372 [TBL] [Abstract][Full Text] [Related]
18. Biocatalytic asymmetric synthesis of secondary allylic alcohols using Burkholderia cepacia lipase immobilized on multiwalled carbon nanotubes. Dias MDRG; da Silva GPC; de Pauloveloso A; Krieger N; Pilissão C Chirality; 2022 Jul; 34(7):1008-1018. PubMed ID: 35506895 [TBL] [Abstract][Full Text] [Related]
19. Rational Design of Nanoparticle Platforms for "Cutting-the-Fat": Covalent Immobilization of Lipase, Glycerol Kinase, and Glycerol-3-Phosphate Oxidase on Metal Nanoparticles. Aggarwal V; Pundir CS Methods Enzymol; 2016; 571():197-223. PubMed ID: 27112401 [TBL] [Abstract][Full Text] [Related]
20. Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. Rios NS; Morais EG; Dos Santos Galvão W; Andrade Neto DM; Dos Santos JCS; Bohn F; Correa MA; Fechine PBA; Fernandez-Lafuente R; Gonçalves LRB Int J Biol Macromol; 2019 Dec; 141():313-324. PubMed ID: 31491511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]