BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28538202)

  • 1. Development of nanobiocatalysts through the immobilization of Pseudomonas fluorescens lipase for applications in efficient kinetic resolution of racemic compounds.
    Dwivedee BP; Bhaumik J; Rai SK; Laha JK; Banerjee UC
    Bioresour Technol; 2017 Sep; 239():464-471. PubMed ID: 28538202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of Lipase from Pseudomonas fluorescens on Porous Polyurea and Its Application in Kinetic Resolution of Racemic 1-Phenylethanol.
    Han H; Zhou Y; Li S; Wang Y; Kong XZ
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25714-25724. PubMed ID: 27618157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile immobilization of Pseudomonas fluorescens lipase on polyaniline nanofibers (PANFs-PFL): A route to develop robust nanobiocatalyst.
    Dwivedee BP; Soni S; Laha JK; Banerjee UC
    Int J Biol Macromol; 2018 Nov; 119():8-14. PubMed ID: 30009899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring a robust and recyclable nanobiocatalyst by immobilization of Pseudomonas fluorescens lipase on carbon nanofiber and its application in synthesis of enantiopure carboetomidate analogue.
    Dwivedee BP; Soni S; Bhimpuria R; Laha JK; Banerjee UC
    Int J Biol Macromol; 2019 Jul; 133():1299-1310. PubMed ID: 30940586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalently immobilized lipase on aminoalkyl-, carboxy- and hydroxy-multi-wall carbon nanotubes in the enantioselective synthesis of Solketal esters.
    Zniszczoł A; Herman AP; Szymańska K; Mrowiec-Białoń J; Walczak KZ; Jarzębski A; Boncel S
    Enzyme Microb Technol; 2016 Jun; 87-88():61-9. PubMed ID: 27178796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkaline lipase from Pseudomonas fluorescens non-covalently immobilised on pristine versus oxidised multi-wall carbon nanotubes as efficient and recyclable catalytic systems in the synthesis of Solketal esters.
    Boncel S; Zniszczoł A; Szymańska K; Mrowiec-Białoń J; Jarzębski A; Walczak KZ
    Enzyme Microb Technol; 2013 Sep; 53(4):263-70. PubMed ID: 23931692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase from Solvent-Tolerant Pseudomonas sp. DMVR46 Strain Adsorb on Multiwalled Carbon Nanotubes: Application for Enzymatic Biotransformation in Organic Solvents.
    Vrutika P; Datta M
    Appl Biochem Biotechnol; 2015 Nov; 177(6):1313-26. PubMed ID: 26329889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support.
    Rios NS; Neto DMA; Dos Santos JCS; Fechine PBA; Fernández-Lafuente R; Gonçalves LRB
    Int J Biol Macromol; 2019 Aug; 134():936-945. PubMed ID: 31121223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability.
    Rios NS; Mendez-Sanchez C; Arana-Peña S; Rueda N; Ortiz C; Gonçalves LRB; Fernandez-Lafuente R
    Biochim Biophys Acta Proteins Proteom; 2019 Sep; 1867(9):741-747. PubMed ID: 31202001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of a recyclable nanobiocatalyst: immobilization of
    Soni S; Dwivedee BP; Chand Banerjee U
    RSC Adv; 2018 Aug; 8(49):27763-27774. PubMed ID: 35542692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEG-modified lipase immobilized onto NH
    Yuan X; Ou J; Zhang P; Xu W; Jiang B; Tang K
    Int J Biol Macromol; 2020 Dec; 165(Pt B):1793-1802. PubMed ID: 33086109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring a stable and recyclable nanobiocatalyst by immobilization of surfactant treated Burkholderia cepacia lipase on polyaniline nanofibers for biocatalytic application.
    Soni S; Dwivedee BP; Banerjee UC
    Int J Biol Macromol; 2020 Oct; 161():573-586. PubMed ID: 32512104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Enzymatic Performance of Immobilized
    Wang Q; Xiong J; Xu H; Sun W; Pan X; Cui S; Lv S; Zhang Y
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CALB Immobilized onto Magnetic Nanoparticles for Efficient Kinetic Resolution of Racemic Secondary Alcohols: Long-Term Stability and Reusability.
    Xing X; Jia JQ; Zhang JF; Zhou ZW; Li J; Wang N; Yu XQ
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30704049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of lipase onto novel constructed polydopamine grafted multiwalled carbon nanotube impregnated with magnetic cobalt and its application in synthesis of fruit flavours.
    Asmat S; Anwer AH; Husain Q
    Int J Biol Macromol; 2019 Nov; 140():484-495. PubMed ID: 31408654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Biodiesel Production Catalyzed by Nanobioconjugate of Lipase from
    Bartha-Vári JH; Moisă ME; Bencze LC; Irimie FD; Paizs C; Toșa MI
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32028723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of immobilization of
    Ameri A; Forootanfar H; Behnam B; Shakibaie M; Ameri A; Daneshpajooh M; Najafi A; Amirheidari B
    3 Biotech; 2021 Jun; 11(6):260. PubMed ID: 33996372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocatalytic asymmetric synthesis of secondary allylic alcohols using Burkholderia cepacia lipase immobilized on multiwalled carbon nanotubes.
    Dias MDRG; da Silva GPC; de Pauloveloso A; Krieger N; Pilissão C
    Chirality; 2022 Jul; 34(7):1008-1018. PubMed ID: 35506895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Design of Nanoparticle Platforms for "Cutting-the-Fat": Covalent Immobilization of Lipase, Glycerol Kinase, and Glycerol-3-Phosphate Oxidase on Metal Nanoparticles.
    Aggarwal V; Pundir CS
    Methods Enzymol; 2016; 571():197-223. PubMed ID: 27112401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents.
    Rios NS; Morais EG; Dos Santos Galvão W; Andrade Neto DM; Dos Santos JCS; Bohn F; Correa MA; Fechine PBA; Fernandez-Lafuente R; Gonçalves LRB
    Int J Biol Macromol; 2019 Dec; 141():313-324. PubMed ID: 31491511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.