These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 28538731)

  • 1. A neural circuit architecture for angular integration in Drosophila.
    Green J; Adachi A; Shah KK; Hirokawa JD; Magani PS; Maimon G
    Nature; 2017 Jun; 546(7656):101-106. PubMed ID: 28538731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural dynamics for landmark orientation and angular path integration.
    Seelig JD; Jayaraman V
    Nature; 2015 May; 521(7551):186-91. PubMed ID: 25971509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angular velocity integration in a fly heading circuit.
    Turner-Evans D; Wegener S; Rouault H; Franconville R; Wolff T; Seelig JD; Druckmann S; Jayaraman V
    Elife; 2017 May; 6():. PubMed ID: 28530551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Converting an allocentric goal into an egocentric steering signal.
    Mussells Pires P; Zhang L; Parache V; Abbott LF; Maimon G
    Nature; 2024 Feb; 626(8000):808-818. PubMed ID: 38326612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature detection and orientation tuning in the Drosophila central complex.
    Seelig JD; Jayaraman V
    Nature; 2013 Nov; 503(7475):262-6. PubMed ID: 24107996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational model of the integration of landmarks and motion in the insect central complex.
    Cope AJ; Sabo C; Vasilaki E; Barron AB; Marshall JA
    PLoS One; 2017; 12(2):e0172325. PubMed ID: 28241061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming representations of movement from body- to world-centric space.
    Lu J; Behbahani AH; Hamburg L; Westeinde EA; Dawson PM; Lyu C; Maimon G; Dickinson MH; Druckmann S; Wilson RI
    Nature; 2022 Jan; 601(7891):98-104. PubMed ID: 34912123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building an allocentric travelling direction signal via vector computation.
    Lyu C; Abbott LF; Maimon G
    Nature; 2022 Jan; 601(7891):92-97. PubMed ID: 34912112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A faithful internal representation of walking movements in the Drosophila visual system.
    Fujiwara T; Cruz TL; Bohnslav JP; Chiappe ME
    Nat Neurosci; 2017 Jan; 20(1):72-81. PubMed ID: 27798632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel encoding of recent visual experience and self-motion during navigation in Drosophila.
    Shiozaki HM; Kazama H
    Nat Neurosci; 2017 Oct; 20(10):1395-1403. PubMed ID: 28869583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angular path integration by moving "hill of activity": a spiking neuron model without recurrent excitation of the head-direction system.
    Song P; Wang XJ
    J Neurosci; 2005 Jan; 25(4):1002-14. PubMed ID: 15673682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical principles explain the structure of the insect head direction circuit.
    Vilimelis Aceituno P; Dall'Osto D; Pisokas I
    Elife; 2024 May; 13():. PubMed ID: 38814703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building a heading signal from anatomically defined neuron types in the Drosophila central complex.
    Green J; Maimon G
    Curr Opin Neurobiol; 2018 Oct; 52():156-164. PubMed ID: 30029143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual space from visual motion: turn integration in tethered flying Drosophila.
    Wolf R; Heisenberg M
    Learn Mem; 1997; 4(4):318-27. PubMed ID: 10706369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms Underlying the Neural Computation of Head Direction.
    Hulse BK; Jayaraman V
    Annu Rev Neurosci; 2020 Jul; 43():31-54. PubMed ID: 31874068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ring attractor dynamics in the
    Kim SS; Rouault H; Druckmann S; Jayaraman V
    Science; 2017 May; 356(6340):849-853. PubMed ID: 28473639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turning behaviour depends on frictional damping in the fruit fly Drosophila.
    Hesselberg T; Lehmann FO
    J Exp Biol; 2007 Dec; 210(Pt 24):4319-34. PubMed ID: 18055621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abolishment of Spontaneous Flight Turns in Visually Responsive Drosophila.
    Ferris BD; Green J; Maimon G
    Curr Biol; 2018 Jan; 28(2):170-180.e5. PubMed ID: 29337081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-ring network model of the head-direction system.
    Xie X; Hahnloser RH; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041902. PubMed ID: 12443230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural circuits underlying circadian behavior in Drosophila melanogaster.
    Chang DC
    Behav Processes; 2006 Feb; 71(2-3):211-25. PubMed ID: 16414209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.