BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28539059)

  • 1. Phenolics from Castanea sativa leaves and their effects on UVB-induced damage.
    Cerulli A; Masullo M; Mari A; Balato A; Filosa R; Lembo S; Napolitano A; Piacente S
    Nat Prod Res; 2018 May; 32(10):1170-1175. PubMed ID: 28539059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chestnut shells (Italian cultivar "Marrone di Roccadaspide" PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MS
    Cerulli A; Napolitano A; Masullo M; Hošek J; Pizza C; Piacente S
    Food Res Int; 2020 Mar; 129():108787. PubMed ID: 32036927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant and In Vitro Preliminary Anti-Inflammatory Activity of
    Cerulli A; Napolitano A; Hošek J; Masullo M; Pizza C; Piacente S
    Antioxidants (Basel); 2021 Feb; 10(2):. PubMed ID: 33670426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LC-MS profiling highlights hazelnut (Nocciola di Giffoni PGI) shells as a byproduct rich in antioxidant phenolics.
    Masullo M; Cerulli A; Mari A; de Souza Santos CC; Pizza C; Piacente S
    Food Res Int; 2017 Nov; 101():180-187. PubMed ID: 28941682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective effect of C. sativa leaf extract against UV mediated-DNA damage in a human keratinocyte cell line.
    Almeida IF; Pinto AS; Monteiro C; Monteiro H; Belo L; Fernandes J; Bento AR; Duarte TL; Garrido J; Bahia MF; Sousa Lobo JM; Costa PC
    J Photochem Photobiol B; 2015 Mar; 144():28-34. PubMed ID: 25686820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Castanea sativa Mill. leaves as new sources of natural antioxidant: an electronic spin resonance study.
    Calliste CA; Trouillas P; Allais DP; Duroux JL
    J Agric Food Chem; 2005 Jan; 53(2):282-8. PubMed ID: 15656662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves.
    Ferracane R; Graziani G; Gallo M; Fogliano V; Ritieni A
    J Pharm Biomed Anal; 2010 Jan; 51(2):399-404. PubMed ID: 19375261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf.
    Silinsin M; Bursal E
    Nat Prod Res; 2018 Jun; 32(12):1467-1471. PubMed ID: 28697630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents.
    Vella FM; Laratta B; La Cara F; Morana A
    Nat Prod Res; 2018 May; 32(9):1022-1032. PubMed ID: 28920445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First characterisation of flavonoid- and diarylheptanoid-type antioxidant phenolics in Corylus maxima by HPLC-DAD-ESI-MS.
    Riethmüller E; Tóth G; Alberti Á; Végh K; Burlini I; Könczöl Á; Balogh GT; Kéry Á
    J Pharm Biomed Anal; 2015 Mar; 107():159-67. PubMed ID: 25594894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An acylated flavonol glycoside and hydrolysable tannins from Callistemon lanceolatus flowers and leaves.
    Marzouk MS
    Phytochem Anal; 2008; 19(6):541-9. PubMed ID: 18618463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS.
    Comandini P; Lerma-García MJ; Simó-Alfonso EF; Toschi TG
    Food Chem; 2014 Aug; 157():290-5. PubMed ID: 24679783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytochemical Profiles and Cellular Antioxidant Activities in Chestnut (
    Chang X; Liu F; Lin Z; Qiu J; Peng C; Lu Y; Guo X
    Molecules; 2020 Jan; 25(1):. PubMed ID: 31906347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial structural characterization and antioxidant activity of a phenolic-xylan from Castanea sativa hardwood.
    Renault E; Barbat-Rogeon A; Chaleix V; Calliste CA; Colas C; Gloaguen V
    Int J Biol Macromol; 2014 Sep; 70():373-80. PubMed ID: 25043130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive phenolics of Harpephyllum caffrum (Anacardiaceae) and their biological effects on human keratinocytes.
    Nawwar M; Hussein S; Ayoub N; Hashim A; El-Sharawy R; Lindequist U; Harms M; Wende K
    Fitoterapia; 2011 Dec; 82(8):1265-71. PubMed ID: 21907269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology.
    Mylonaki S; Kiassos E; Makris DP; Kefalas P
    Anal Bioanal Chem; 2008 Nov; 392(5):977-85. PubMed ID: 18762919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Qualitative and quantitative analysis of phenolics in Tetrastigma hemsleyanum and their antioxidant and antiproliferative activities.
    Sun Y; Li H; Hu J; Li J; Fan YW; Liu XR; Deng ZY
    J Agric Food Chem; 2013 Nov; 61(44):10507-15. PubMed ID: 24151872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical Profiling of Bioactive Phenolic Compounds in Argan (Argania spinosa) Leaves by Combined Microextraction by Packed Sorbent (MEPS) and LC-DAD-MS/MS.
    Mercolini L; Protti M; Saracino MA; Mandrone M; Antognoni F; Poli F
    Phytochem Anal; 2016; 27(1):41-9. PubMed ID: 26352897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithospermum erythrorhizon extract protects keratinocytes and fibroblasts against oxidative stress.
    Yoo HG; Lee BH; Kim W; Lee JS; Kim GH; Chun OK; Koo SI; Kim DO
    J Med Food; 2014 Nov; 17(11):1189-96. PubMed ID: 25136892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid profiling of phenolic compounds of green and fermented Bergenia crassifolia L. leaves by UPLC-DAD-QqQ-MS and HPLC-DAD-ESI-QTOF-MS.
    Salminen JP; Shikov AN; Karonen M; Pozharitskaya ON; Kim J; Makarov VG; Hiltunen R; Galambosi B
    Nat Prod Res; 2014; 28(19):1530-3. PubMed ID: 24896228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.