These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 28539326)
1. Systematic Evaluation of Protein Reduction and Alkylation Reveals Massive Unspecific Side Effects by Iodine-containing Reagents. Müller T; Winter D Mol Cell Proteomics; 2017 Jul; 16(7):1173-1187. PubMed ID: 28539326 [TBL] [Abstract][Full Text] [Related]
2. Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS-based proteomics. Suttapitugsakul S; Xiao H; Smeekens J; Wu R Mol Biosyst; 2017 Nov; 13(12):2574-2582. PubMed ID: 29019370 [TBL] [Abstract][Full Text] [Related]
3. The Impact of Commonly Used Alkylating Agents on Artifactual Peptide Modification. Hains PG; Robinson PJ J Proteome Res; 2017 Sep; 16(9):3443-3447. PubMed ID: 28799334 [TBL] [Abstract][Full Text] [Related]
4. Cysteine alkylation methods in shotgun proteomics and their possible effects on methionine residues. Kuznetsova KG; Levitsky LI; Pyatnitskiy MA; Ilina IY; Bubis JA; Solovyeva EM; Zgoda VG; Gorshkov MV; Moshkovskii SA J Proteomics; 2021 Jan; 231():104022. PubMed ID: 33096305 [TBL] [Abstract][Full Text] [Related]
5. N-t-butyliodoacetamide and iodoacetanilide: two new cysteine alkylating reagents for relative quantitation of proteins. Pasquarello C; Sanchez JC; Hochstrasser DF; Corthals GL Rapid Commun Mass Spectrom; 2004; 18(1):117-27. PubMed ID: 14689568 [TBL] [Abstract][Full Text] [Related]
6. Optimization of cysteine residue alkylation using an on-line LC-MS strategy: Benefits of using a cocktail of haloacetamide reagents. Murphy EL; Joy AP; Ouellette RJ; Barnett DA Anal Biochem; 2021 Apr; 619():114137. PubMed ID: 33582115 [TBL] [Abstract][Full Text] [Related]
7. Modification of Cysteine. Grant GA Curr Protoc Protein Sci; 2017 Feb; 87():15.1.1-15.1.23. PubMed ID: 28150879 [TBL] [Abstract][Full Text] [Related]
8. Characterizing closely spaced, complex disulfide bond patterns in peptides and proteins by liquid chromatography/electrospray ionization tandem mass spectrometry. Yen TY; Yan H; Macher BA J Mass Spectrom; 2002 Jan; 37(1):15-30. PubMed ID: 11813307 [TBL] [Abstract][Full Text] [Related]
9. Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Sechi S; Chait BT Anal Chem; 1998 Dec; 70(24):5150-8. PubMed ID: 9868912 [TBL] [Abstract][Full Text] [Related]
10. Ion source-dependent performance of 4-vinylpyridine, iodoacetamide, and N-maleoyl derivatives for the detection of cysteine-containing peptides in complex proteomics. Nadler W; Berg R; Walch P; Hanke S; Baalmann M; Kerner A; Trumpp A; Roesli C Anal Bioanal Chem; 2016 Mar; 408(8):2055-67. PubMed ID: 26493978 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of water-soluble hypervalent iodine reagents for fluoroalkylation of biological thiols. Klimánková I; Hubálek M; Matoušek V; Beier P Org Biomol Chem; 2019 Dec; 17(47):10097-10102. PubMed ID: 31754683 [TBL] [Abstract][Full Text] [Related]
12. Modified cysteine S-phosphopeptide standards for mass spectrometry-based proteomics. Buchowiecka AK Amino Acids; 2019 Sep; 51(9):1365-1375. PubMed ID: 31471744 [TBL] [Abstract][Full Text] [Related]
13. A Mass Spectrometry Strategy for Protein Quantification Based on the Differential Alkylation of Cysteines Using Iodoacetamide and Acrylamide. Virág D; Schlosser G; Borbély A; Gellén G; Papp D; Kaleta Z; Dalmadi-Kiss B; Antal I; Ludányi K Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731875 [TBL] [Abstract][Full Text] [Related]
14. Identification of reduction-susceptible disulfide bonds in transferrin by differential alkylation using O(16)/O(18) labeled iodoacetic acid. Wang S; Kaltashov IA J Am Soc Mass Spectrom; 2015 May; 26(5):800-7. PubMed ID: 25716754 [TBL] [Abstract][Full Text] [Related]
15. Identification and quantitation of cysteine in proteins separated by gel electrophoresis. Yan JX; Kett WC; Herbert BR; Gooley AA; Packer NH; Williams KL J Chromatogr A; 1998 Jul; 813(1):187-200. PubMed ID: 9697320 [TBL] [Abstract][Full Text] [Related]
16. Chemoselective Methionine Bioconjugation on a Polypeptide, Protein, and Proteome. Zang J; Chen Y; Zhu W; Lin S Biochemistry; 2020 Jan; 59(2):132-138. PubMed ID: 31592657 [TBL] [Abstract][Full Text] [Related]
17. Trends in the Design of New Isobaric Labeling Reagents for Quantitative Proteomics. Bąchor R; Waliczek M; Stefanowicz P; Szewczuk Z Molecules; 2019 Feb; 24(4):. PubMed ID: 30781343 [TBL] [Abstract][Full Text] [Related]
18. Matrix-assisted laser desorption/ionization-MS-based relative quantification of peptides and proteins using iodoacetamide and N-methyliodoacetamide as labeling reagents. Sun MC; Chen CD; Huang YS; Wu ZS; Ho YP J Sep Sci; 2008 Feb; 31(3):538-47. PubMed ID: 18210377 [TBL] [Abstract][Full Text] [Related]
19. Identification of an acetonitrile addition impurity formed during peptide disulfide bond reduction using dithiothreitol and Tris(2-carboxyethyl)phosphine. Zhao E; St-Jean F; Robinson SJ; Sirois LE; Pellett J; Al-Sayah MA J Pharm Biomed Anal; 2019 Sep; 174():518-524. PubMed ID: 31252308 [TBL] [Abstract][Full Text] [Related]
20. [Modification of cysteine residues for mass spectrometry-based proteomic analysis: facts and artifacts]. Kuznetsova KG; Solovyeva EM; Kuzikov AV; Gorshkov MV; Moshkovskii SA Biomed Khim; 2020 Jan; 66(1):18-29. PubMed ID: 32116223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]