BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28539360)

  • 1. A dock and coalesce mechanism driven by hydrophobic interactions governs Cdc42 binding with its effector protein ACK.
    Tetley GJN; Mott HR; Cooley RN; Owen D
    J Biol Chem; 2017 Jul; 292(27):11361-11373. PubMed ID: 28539360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity determinants on Cdc42 for binding its effector protein ACK.
    Elliot-Smith AE; Mott HR; Lowe PN; Laue ED; Owen D
    Biochemistry; 2005 Sep; 44(37):12373-83. PubMed ID: 16156650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bond swapping from a charge cloud allows flexible coordination of upstream signals through WASP: Multiple regulatory roles for the WASP basic region.
    Tetley GJN; Szeto A; Fountain AJ; Mott HR; Owen D
    J Biol Chem; 2018 Sep; 293(39):15136-15151. PubMed ID: 30104412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the region in Cdc42 that confers the binding specificity to activated Cdc42-associated kinase.
    Gu Y; Lin Q; Childress C; Yang W
    J Biol Chem; 2004 Jul; 279(29):30507-13. PubMed ID: 15123659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residues in Cdc42 that specify binding to individual CRIB effector proteins.
    Owen D; Mott HR; Laue ED; Lowe PN
    Biochemistry; 2000 Feb; 39(6):1243-50. PubMed ID: 10684602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of Cdc42 bound to the GTPase binding domain of PAK.
    Morreale A; Venkatesan M; Mott HR; Owen D; Nietlispach D; Lowe PN; Laue ED
    Nat Struct Biol; 2000 May; 7(5):384-8. PubMed ID: 10802735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK.
    Mott HR; Owen D; Nietlispach D; Lowe PN; Manser E; Lim L; Laue ED
    Nature; 1999 May; 399(6734):384-8. PubMed ID: 10360579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double mutant cycle thermodynamic analysis of the hydrophobic Cdc42-ACK protein-protein interaction.
    Elliot-Smith AE; Owen D; Mott HR; Lowe PN
    Biochemistry; 2007 Dec; 46(49):14087-99. PubMed ID: 17999470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation.
    Rudolph MG; Bayer P; Abo A; Kuhlmann J; Vetter IR; Wittinghofer A
    J Biol Chem; 1998 Jul; 273(29):18067-76. PubMed ID: 9660763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CDC42 binds PAK4 via an extended GTPase-effector interface.
    Ha BH; Boggon TJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):531-536. PubMed ID: 29295922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism and rate constants of the Cdc42 GTPase binding with intrinsically disordered effectors.
    Pang X; Zhou HX
    Proteins; 2016 May; 84(5):674-85. PubMed ID: 26879470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence assays of Cdc42 interactions with target/effector proteins.
    Nomanbhoy T; Cerione RA
    Biochemistry; 1999 Nov; 38(48):15878-84. PubMed ID: 10625453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway.
    Linseman DA; Heidenreich KA; Fisher SK
    J Biol Chem; 2001 Feb; 276(8):5622-8. PubMed ID: 11087735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein.
    Abdul-Manan N; Aghazadeh B; Liu GA; Majumdar A; Ouerfelli O; Siminovitch KA; Rosen MK
    Nature; 1999 May; 399(6734):379-83. PubMed ID: 10360578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The CDC42-specific inhibitor derived from ACK-1 blocks v-Ha-Ras-induced transformation.
    Nur-E-Kamal MS; Kamal JM; Qureshi MM; Maruta H
    Oncogene; 1999 Dec; 18(54):7787-93. PubMed ID: 10618719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of a novel Cdc42-associated tyrosine kinase, ACK-2, from bovine brain.
    Yang W; Cerione RA
    J Biol Chem; 1997 Oct; 272(40):24819-24. PubMed ID: 9312079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRIB effector disorder: exquisite function from chaos.
    Owen D; Mott HR
    Biochem Soc Trans; 2018 Oct; 46(5):1289-1302. PubMed ID: 30154092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bivalent dissectional analysis of the high-affinity interactions between Cdc42 and the Cdc42/Rac interactive binding domains of signaling kinases in Candida albicans.
    Su Z; Osborne MJ; Xu P; Xu X; Li Y; Ni F
    Biochemistry; 2005 Dec; 44(50):16461-74. PubMed ID: 16342938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Requirement of activated Cdc42-associated kinase for survival of v-Ras-transformed mammalian cells.
    Nur-E-Kamal A; Zhang A; Keenan SM; Wang XI; Seraj J; Satoh T; Meiners S; Welsh WJ
    Mol Cancer Res; 2005 May; 3(5):297-305. PubMed ID: 15886301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc42-dependent nuclear translocation of non-receptor tyrosine kinase, ACK.
    Ahmed I; Calle Y; Sayed MA; Kamal JM; Rengaswamy P; Manser E; Meiners S; Nur-E-Kamal A
    Biochem Biophys Res Commun; 2004 Feb; 314(2):571-9. PubMed ID: 14733946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.