These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28539392)

  • 1. Sodium pump regulation of locomotor control circuits.
    Picton LD; Zhang H; Sillar KT
    J Neurophysiol; 2017 Aug; 118(2):1070-1081. PubMed ID: 28539392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function.
    Zhang HY; Sillar KT
    Curr Biol; 2012 Mar; 22(6):526-31. PubMed ID: 22405867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks.
    Picton LD; Nascimento F; Broadhead MJ; Sillar KT; Miles GB
    J Neurosci; 2017 Jan; 37(4):906-921. PubMed ID: 28123025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal modulation of short-term motor memory via dynamic sodium pumps in a vertebrate spinal cord.
    Hachoumi L; Rensner R; Richmond C; Picton L; Zhang H; Sillar KT
    Curr Biol; 2022 Mar; 32(5):1038-1048.e2. PubMed ID: 35104440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms underlying the activity-dependent regulation of locomotor network performance by the Na+ pump.
    Zhang HY; Picton L; Li WC; Sillar KT
    Sci Rep; 2015 Nov; 5():16188. PubMed ID: 26541477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of Xenopus tadpoles.
    Currie SP; Sillar KT
    J Neurophysiol; 2018 Mar; 119(3):786-795. PubMed ID: 29142093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Xenopus Tadpole Locomotion via Selective Expression of Ih in Excitatory Interneurons.
    Picton LD; Sillar KT; Zhang HY
    Curr Biol; 2018 Dec; 28(24):3911-3923.e2. PubMed ID: 30503615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor control: learning new moves with old pumps.
    Simmers J
    Curr Biol; 2012 Mar; 22(6):R194-6. PubMed ID: 22440804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State.
    Sharples SA; Whelan PJ
    eNeuro; 2017; 4(1):. PubMed ID: 28144626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comodulation of h- and Na
    Ellingson PJ; Barnett WH; Kueh D; Vargas A; Calabrese RL; Cymbalyuk GS
    J Neurosci; 2021 Jul; 41(30):6468-6483. PubMed ID: 34103361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexibility of the axial central pattern generator network for locomotion in the salamander.
    Ryczko D; Knüsel J; Crespi A; Lamarque S; Mathou A; Ijspeert AJ; Cabelguen JM
    J Neurophysiol; 2015 Mar; 113(6):1921-40. PubMed ID: 25540227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental stage-dependent switching in the neuromodulation of vertebrate locomotor central pattern generator networks.
    Hachoumi L; Sillar KT
    Dev Neurobiol; 2020 Jan; 80(1-2):42-57. PubMed ID: 31705739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike integration and cellular memory in a rhythmic network from Na+/K+ pump current dynamics.
    Pulver SR; Griffith LC
    Nat Neurosci; 2010 Jan; 13(1):53-9. PubMed ID: 19966842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fictive rhythmic motor patterns produced by the tail spinal cord in salamanders.
    Charrier V; Cabelguen JM
    Neuroscience; 2013; 255():191-202. PubMed ID: 24161283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na(+)/K(+) pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches.
    Kueh D; Barnett WH; Cymbalyuk GS; Calabrese RL
    Elife; 2016 Sep; 5():. PubMed ID: 27588351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gliotransmission and adenosinergic modulation: insights from mammalian spinal motor networks.
    Acton D; Miles GB
    J Neurophysiol; 2017 Dec; 118(6):3311-3327. PubMed ID: 28954893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-dependent potassium channels of a Slack-like subtype contribute to the slow afterhyperpolarization in lamprey spinal neurons.
    Wallén P; Robertson B; Cangiano L; Löw P; Bhattacharjee A; Kaczmarek LK; Grillner S
    J Physiol; 2007 Nov; 585(Pt 1):75-90. PubMed ID: 17884929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition of pattern generation: the phenomenon of post-scratching locomotion.
    Trejo A; Tapia JA; De la Torre Valdovinos B; Huidobro N; Flores G; Flores-Hernandez J; Flores A; Manjarrez E
    Neuroscience; 2015 Mar; 288():156-66. PubMed ID: 25556832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity.
    Messina JA; St Paul A; Hargis S; Thompson WE; McClellan AD
    Front Neural Circuits; 2017; 11():89. PubMed ID: 29225569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
    Rybak IA; Shevtsova NA; Lafreniere-Roula M; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):617-39. PubMed ID: 17008376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.