BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 28539420)

  • 1. A Selective Role for Dopamine in Learning to Maximize Reward But Not to Minimize Effort: Evidence from Patients with Parkinson's Disease.
    Skvortsova V; Degos B; Welter ML; Vidailhet M; Pessiglione M
    J Neurosci; 2017 Jun; 37(25):6087-6097. PubMed ID: 28539420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dopamine on reinforcement learning in Parkinson's disease depend on motor phenotype.
    van Nuland AJ; Helmich RC; Dirkx MF; Zach H; Toni I; Cools R; den Ouden HEM
    Brain; 2020 Dec; 143(11):3422-3434. PubMed ID: 33147621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Dissection of Dopamine Motor and Motivational Functions in Humans.
    Le Bouc R; Rigoux L; Schmidt L; Degos B; Welter ML; Vidailhet M; Daunizeau J; Pessiglione M
    J Neurosci; 2016 Jun; 36(25):6623-33. PubMed ID: 27335396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine restores cognitive motivation in Parkinson's disease.
    McGuigan S; Zhou SH; Brosnan MB; Thyagarajan D; Bellgrove MA; Chong TT
    Brain; 2019 Mar; 142(3):719-732. PubMed ID: 30689734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson's disease.
    Le Heron C; Plant O; Manohar S; Ang YS; Jackson M; Lennox G; Hu MT; Husain M
    Brain; 2018 May; 141(5):1455-1469. PubMed ID: 29672668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine-Dependent Loss Aversion during Effort-Based Decision-Making.
    Chen X; Voets S; Jenkinson N; Galea JM
    J Neurosci; 2020 Jan; 40(3):661-670. PubMed ID: 31727795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognitive states influence dopamine-driven aberrant learning in Parkinson's disease.
    Cavanagh JF; Mueller AA; Brown DR; Janowich JR; Story-Remer JH; Wegele A; Richardson SP
    Cortex; 2017 May; 90():115-124. PubMed ID: 28384481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopaminergic medication increases motivation to exert cognitive control by reducing subjective effort costs in Parkinson's patients.
    Bogdanov M; LoParco S; Otto AR; Sharp M
    Neurobiol Learn Mem; 2022 Sep; 193():107652. PubMed ID: 35724812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose dependent dopaminergic modulation of reward-based learning in Parkinson's disease.
    van Wouwe NC; Ridderinkhof KR; Band GP; van den Wildenberg WP; Wylie SA
    Neuropsychologia; 2012 Apr; 50(5):583-91. PubMed ID: 22223079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine selectively remediates 'model-based' reward learning: a computational approach.
    Sharp ME; Foerde K; Daw ND; Shohamy D
    Brain; 2016 Feb; 139(Pt 2):355-64. PubMed ID: 26685155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine enhances willingness to exert effort for reward in Parkinson's disease.
    Chong TT; Bonnelle V; Manohar S; Veromann KR; Muhammed K; Tofaris GK; Hu M; Husain M
    Cortex; 2015 Aug; 69():40-6. PubMed ID: 25967086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric dopamine loss differentially affects effort to maximize gain or minimize loss.
    Porat O; Hassin-Baer S; Cohen OS; Markus A; Tomer R
    Cortex; 2014 Feb; 51():82-91. PubMed ID: 24267688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine modulates striatal response to reward and punishment in patients with Parkinson's disease: a pharmacological challenge fMRI study.
    Argyelan M; Herzallah M; Sako W; DeLucia I; Sarpal D; Vo A; Fitzpatrick T; Moustafa AA; Eidelberg D; Gluck M
    Neuroreport; 2018 May; 29(7):532-540. PubMed ID: 29432300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits.
    Salamone JD; Correa M; Farrar A; Mingote SM
    Psychopharmacology (Berl); 2007 Apr; 191(3):461-82. PubMed ID: 17225164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemispheric dissociation of reward processing in humans: insights from deep brain stimulation.
    Palminteri S; Serra G; Buot A; Schmidt L; Welter ML; Pessiglione M
    Cortex; 2013; 49(10):2834-44. PubMed ID: 23643244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine is associated with prioritization of reward-associated memories in Parkinson's disease.
    Sharp ME; Duncan K; Foerde K; Shohamy D
    Brain; 2020 Aug; 143(8):2519-2531. PubMed ID: 32844197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine promotes instrumental motivation, but reduces reward-related vigour.
    Grogan JP; Sandhu TR; Hu MT; Manohar SG
    Elife; 2020 Oct; 9():. PubMed ID: 33001026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning to minimize efforts versus maximizing rewards: computational principles and neural correlates.
    Skvortsova V; Palminteri S; Pessiglione M
    J Neurosci; 2014 Nov; 34(47):15621-30. PubMed ID: 25411490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited encoding of effort by dopamine neurons in a cost-benefit trade-off task.
    Pasquereau B; Turner RS
    J Neurosci; 2013 May; 33(19):8288-300. PubMed ID: 23658169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological modulation of subliminal learning in Parkinson's and Tourette's syndromes.
    Palminteri S; Lebreton M; Worbe Y; Grabli D; Hartmann A; Pessiglione M
    Proc Natl Acad Sci U S A; 2009 Nov; 106(45):19179-84. PubMed ID: 19850878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.