These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 28539425)

  • 21. Goal-Directed and Habit-Like Modulations of Stimulus Processing during Reinforcement Learning.
    Luque D; Beesley T; Morris RW; Jack BN; Griffiths O; Whitford TJ; Le Pelley ME
    J Neurosci; 2017 Mar; 37(11):3009-3017. PubMed ID: 28193692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Value-modulated attentional capture is augmented by win-related sensory cues.
    Pearson D; Piao M; Le Pelley ME
    Q J Exp Psychol (Hove); 2024 Jan; 77(1):133-143. PubMed ID: 36803153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polarity-dependent Effects of Biparietal Transcranial Direct Current Stimulation on the Interplay between Target Location and Distractor Saliency in Visual Attention.
    Chechlacz M; Hansen PC; Geng JJ; Cazzoli D
    J Cogn Neurosci; 2018 Jun; 30(6):851-866. PubMed ID: 29393718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suppressive Control of Incentive Salience in Real-World Human Vision.
    Hickey C; Acunzo D; Dell J
    J Neurosci; 2023 Sep; 43(37):6415-6429. PubMed ID: 37562963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural correlates of context-dependent feature conjunction learning in visual search tasks.
    Reavis EA; Frank SM; Greenlee MW; Tse PU
    Hum Brain Mapp; 2016 Jun; 37(6):2319-30. PubMed ID: 26970441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple Transient Signals in Human Visual Cortex Associated with an Elementary Decision.
    Meindertsma T; Kloosterman NA; Nolte G; Engel AK; Donner TH
    J Neurosci; 2017 Jun; 37(23):5744-5757. PubMed ID: 28495972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reward-associated features capture attention in the absence of awareness: Evidence from object-substitution masking.
    Harris JA; Donohue SE; Schoenfeld MA; Hopf JM; Heinze HJ; Woldorff MG
    Neuroimage; 2016 Aug; 137():116-123. PubMed ID: 27153978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning What Is Irrelevant or Relevant: Expectations Facilitate Distractor Inhibition and Target Facilitation through Distinct Neural Mechanisms.
    van Moorselaar D; Slagter HA
    J Neurosci; 2019 Aug; 39(35):6953-6967. PubMed ID: 31270162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Valence, Not Utility, Underlies Reward-Driven Prioritization in Human Vision.
    Barbaro L; Peelen MV; Hickey C
    J Neurosci; 2017 Oct; 37(43):10438-10450. PubMed ID: 28951452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards understanding how we pay attention in naturalistic visual search settings.
    Turoman N; Tivadar RI; Retsa C; Murray MM; Matusz PJ
    Neuroimage; 2021 Dec; 244():118556. PubMed ID: 34492292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A singleton distractor updates the inhibitory template for visual marking.
    Yamauchi K; Kawahara JI
    Acta Psychol (Amst); 2019 Jan; 192():200-211. PubMed ID: 30530171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation.
    Failing M; Wang B; Theeuwes J
    Atten Percept Psychophys; 2019 Jul; 81(5):1405-1414. PubMed ID: 30868474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The attentional blink modulates activity in the early visual cortex.
    Hein G; Alink A; Kleinschmidt A; Müller NG
    J Cogn Neurosci; 2009 Jan; 21(1):197-206. PubMed ID: 18510438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.
    Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J
    Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Top-Down Focused Spatial Attention in Preattentive Salience Coding and Salience-based Attentional Capture.
    Bertleff S; Fink GR; Weidner R
    J Cogn Neurosci; 2016 Aug; 28(8):1152-65. PubMed ID: 27054402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Audiovisual Modulation in Mouse Primary Visual Cortex Depends on Cross-Modal Stimulus Configuration and Congruency.
    Meijer GT; Montijn JS; Pennartz CMA; Lansink CS
    J Neurosci; 2017 Sep; 37(36):8783-8796. PubMed ID: 28821672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissociable neural mechanisms underlie value-driven and selection-driven attentional capture.
    Kim H; Anderson BA
    Brain Res; 2019 Apr; 1708():109-115. PubMed ID: 30468726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Value-driven attentional priority signals in human basal ganglia and visual cortex.
    Anderson BA; Laurent PA; Yantis S
    Brain Res; 2014 Oct; 1587():88-96. PubMed ID: 25171805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early top-down control over saccadic target selection: Evidence from a systematic salience difference manipulation.
    Goschy H; Koch AI; Müller HJ; Zehetleitner M
    Atten Percept Psychophys; 2014 Feb; 76(2):367-82. PubMed ID: 24323673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collinear masking effect in visual search is independent of perceptual salience.
    Jingling L; Lu YH; Cheng M; Tseng CH
    Atten Percept Psychophys; 2017 Jul; 79(5):1366-1383. PubMed ID: 28337728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.