BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 28539515)

  • 1. How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in
    Kellermann V; van Heerwaarden B; Sgrò CM
    Proc Biol Sci; 2017 May; 284(1855):. PubMed ID: 28539515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the thermal limits: Non-linear reaction norms drive disparate thermal acclimation responses in Drosophila melanogaster.
    Salachan PV; Burgaud H; Sørensen JG
    J Insect Physiol; 2019 Oct; 118():103946. PubMed ID: 31525352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for lower plasticity in CT
    Kellermann V; Sgrò CM
    J Evol Biol; 2018 Sep; 31(9):1300-1312. PubMed ID: 29876997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction.
    Simon MN; Ribeiro PL; Navas CA
    J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR; Eller OC; Hahn DA; Morgan TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming.
    Turriago JL; Tejedo M; Hoyos JM; Bernal MH
    J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):746-759. PubMed ID: 35674344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance.
    Slotsbo S; Schou MF; Kristensen TN; Loeschcke V; Sørensen JG
    J Exp Biol; 2016 Sep; 219(Pt 17):2726-32. PubMed ID: 27353229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flies on the rise: acclimation effect on mitochondrial oxidation capacity at normal and high temperatures in Drosophila melanogaster.
    Blanchard A; Aminot M; Gould N; Léger A; Pichaud N
    J Exp Biol; 2024 Jun; 227(12):. PubMed ID: 38841909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations.
    Ruthsatz K; Dahlke F; Alter K; Wohlrab S; Eterovick PC; Lyra ML; Gippner S; Cooke SJ; Peck MA
    Glob Chang Biol; 2024 May; 30(5):e17318. PubMed ID: 38771091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical thermal limits affected differently by developmental and adult thermal fluctuations.
    Salachan PV; Sørensen JG
    J Exp Biol; 2017 Dec; 220(Pt 23):4471-4478. PubMed ID: 28982965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species.
    MacLean HJ; Sørensen JG; Kristensen TN; Loeschcke V; Beedholm K; Kellermann V; Overgaard J
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180548. PubMed ID: 31203763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal tolerance and acclimation capacity in the European common frog (Rana temporaria) change throughout ontogeny.
    Ruthsatz K; Dausmann KH; Peck MA; Glos J
    J Exp Zool A Ecol Integr Physiol; 2022 Jun; 337(5):477-490. PubMed ID: 35226414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How plastic are upper thermal limits? A comparative study in tsetse (family: Glossinidae) and wider Diptera.
    Weaving H; Terblanche JS; English S
    J Therm Biol; 2023 Dec; 118():103745. PubMed ID: 37924664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Costs and benefits of cold acclimation in field-released Drosophila.
    Kristensen TN; Hoffmann AA; Overgaard J; Sørensen JG; Hallas R; Loeschcke V
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):216-21. PubMed ID: 18162547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat hardening of a larval amphibian is dependent on acclimation period and temperature.
    Dallas J; Warne RW
    J Exp Zool A Ecol Integr Physiol; 2023 May; 339(4):339-345. PubMed ID: 36811331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates.
    Everatt MJ; Bale JS; Convey P; Worland MR; Hayward SA
    J Insect Physiol; 2013 Oct; 59(10):1057-64. PubMed ID: 23973412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How much starvation, desiccation and oxygen depletion can Drosophila melanogaster tolerate before its upper thermal limits are affected?
    Manenti T; Cunha TR; Sørensen JG; Loeschcke V
    J Insect Physiol; 2018; 111():1-7. PubMed ID: 30273554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: quantitative traits to transcripts.
    Clemson AS; Sgrò CM; Telonis-Scott M
    J Evol Biol; 2016 Dec; 29(12):2447-2463. PubMed ID: 27542565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity.
    van Heerwaarden B; Sgrò C; Kellermann VM
    Proc Biol Sci; 2024 Feb; 291(2016):20232700. PubMed ID: 38320612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.