BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 28539612)

  • 1. The role of retinol dehydrogenase 10 in the cone visual cycle.
    Xue Y; Sato S; Razafsky D; Sahu B; Shen SQ; Potter C; Sandell LL; Corbo JC; Palczewski K; Maeda A; Hodzic D; Kefalov VJ
    Sci Rep; 2017 May; 7(1):2390. PubMed ID: 28539612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration.
    Sato S; Kefalov VJ
    J Physiol; 2016 Nov; 594(22):6753-6765. PubMed ID: 27385534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina.
    Kolesnikov AV; Maeda A; Tang PH; Imanishi Y; Palczewski K; Kefalov VJ
    J Physiol; 2015 Nov; 593(22):4923-41. PubMed ID: 26350353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones.
    Sato S; Frederiksen R; Cornwall MC; Kefalov VJ
    Vis Neurosci; 2017 Jan; 34():E004. PubMed ID: 28359344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditional deletion of Des1 in the mouse retina does not impair the visual cycle in cones.
    Kiser PD; Kolesnikov AV; Kiser JZ; Dong Z; Chaurasia B; Wang L; Summers SA; Hoang T; Blackshaw S; Peachey NS; Kefalov VJ; Palczewski K
    FASEB J; 2019 Apr; 33(4):5782-5792. PubMed ID: 30645148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional Ablation of Retinol Dehydrogenase 10 in the Retinal Pigmented Epithelium Causes Delayed Dark Adaption in Mice.
    Sahu B; Sun W; Perusek L; Parmar V; Le YZ; Griswold MD; Palczewski K; Maeda A
    J Biol Chem; 2015 Nov; 290(45):27239-27247. PubMed ID: 26391396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The visual cycle of the cone photoreceptors of the retina.
    Wolf G
    Nutr Rev; 2004 Jul; 62(7 Pt 1):283-6. PubMed ID: 15384919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinol Dehydrogenases Regulate Vitamin A Metabolism for Visual Function.
    Sahu B; Maeda A
    Nutrients; 2016 Nov; 8(11):. PubMed ID: 27879662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-Driven Regeneration of Cone Visual Pigments through a Mechanism Involving RGR Opsin in Müller Glial Cells.
    Morshedian A; Kaylor JJ; Ng SY; Tsan A; Frederiksen R; Xu T; Yuan L; Sampath AP; Radu RA; Fain GL; Travis GH
    Neuron; 2019 Jun; 102(6):1172-1183.e5. PubMed ID: 31056353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isomerization and oxidation of vitamin a in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight.
    Mata NL; Radu RA; Clemmons RC; Travis GH
    Neuron; 2002 Sep; 36(1):69-80. PubMed ID: 12367507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mammalian cone visual cycle promotes rapid M/L-cone pigment regeneration independently of the interphotoreceptor retinoid-binding protein.
    Kolesnikov AV; Tang PH; Parker RO; Crouch RK; Kefalov VJ
    J Neurosci; 2011 May; 31(21):7900-9. PubMed ID: 21613504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interphotoreceptor retinoid-binding protein as the physiologically relevant carrier of 11-cis-retinol in the cone visual cycle.
    Parker R; Wang JS; Kefalov VJ; Crouch RK
    J Neurosci; 2011 Mar; 31(12):4714-9. PubMed ID: 21430170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 11-cis-retinol dehydrogenase activity of RDH10 and its interaction with visual cycle proteins.
    Farjo KM; Moiseyev G; Takahashi Y; Crouch RK; Ma JX
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5089-97. PubMed ID: 19458327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin A metabolism in rod and cone visual cycles.
    Saari JC
    Annu Rev Nutr; 2012 Aug; 32():125-45. PubMed ID: 22809103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin A and Vision.
    Saari JC
    Subcell Biochem; 2016; 81():231-259. PubMed ID: 27830507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The action of 11-cis-retinol on cone opsins and intact cone photoreceptors.
    Ala-Laurila P; Cornwall MC; Crouch RK; Kono M
    J Biol Chem; 2009 Jun; 284(24):16492-16500. PubMed ID: 19386593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ciliary neurotrophic factor (CNTF) protects retinal cone and rod photoreceptors by suppressing excessive formation of the visual pigments.
    Li S; Sato K; Gordon WC; Sendtner M; Bazan NG; Jin M
    J Biol Chem; 2018 Sep; 293(39):15256-15268. PubMed ID: 30115683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cone-specific visual cycle.
    Wang JS; Kefalov VJ
    Prog Retin Eye Res; 2011 Mar; 30(2):115-28. PubMed ID: 21111842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rod and cone visual cycle consequences of a null mutation in the 11-cis-retinol dehydrogenase gene in man.
    Cideciyan AV; Haeseleer F; Fariss RN; Aleman TS; Jang GF; Verlinde CLMJ; Marmor MF; Jacobson SG; Palczewski K
    Vis Neurosci; 2000; 17(5):667-678. PubMed ID: 11153648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-photopic and photopic visual cycles differentially regulate immediate, early, and late phases of cone photoreceptor-mediated vision.
    Ward R; Kaylor JJ; Cobice DF; Pepe DA; McGarrigle EM; Brockerhoff SE; Hurley JB; Travis GH; Kennedy BN
    J Biol Chem; 2020 May; 295(19):6482-6497. PubMed ID: 32238432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.