These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28539632)

  • 1. A seven-million-year hornblende mineral record from the central Chinese Loess Plateau.
    He T; Liu L; Chen Y; Sheng X; Ji J
    Sci Rep; 2017 May; 7(1):2382. PubMed ID: 28539632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment.
    Nie J; Stevens T; Rittner M; Stockli D; Garzanti E; Limonta M; Bird A; Andò S; Vermeesch P; Saylor J; Lu H; Breecker D; Hu X; Liu S; Resentini A; Vezzoli G; Peng W; Carter A; Ji S; Pan B
    Nat Commun; 2015 Oct; 6():8511. PubMed ID: 26449321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced weathering input from South Asia to the Indian Ocean since the late Eocene.
    Song Z; Wan S; Colin C; France-Lanord C; Yu Z; Dapoigny A; Jin H; Li M; Zhang J; Zhao D; Shi X; Li A
    Sci Bull (Beijing); 2023 Feb; 68(3):305-313. PubMed ID: 36690576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phased uplift of the northeastern Tibetan Plateau inferred from a pollen record from Yinchuan Basin, northwestern China.
    Li X; Hao Q; Wei M; Andreev AA; Wang J; Tian Y; Li X; Cai M; Hu J; Shi W
    Sci Rep; 2017 Dec; 7(1):18023. PubMed ID: 29269783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-number detrital zircon U-Pb ages reveal global cooling caused the formation of the Chinese Loess Plateau during Late Miocene.
    Zhang H; Lu H; He J; Xie W; Wang H; Zhang H; Breecker D; Bird A; Stevens T; Nie J; Li G
    Sci Adv; 2022 Oct; 8(41):eabq2007. PubMed ID: 36223463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Late Oligocene-early Miocene birth of the Taklimakan Desert.
    Zheng H; Wei X; Tada R; Clift PD; Wang B; Jourdan F; Wang P; He M
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7662-7. PubMed ID: 26056281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume.
    Maslin MA; Christensen B
    J Hum Evol; 2007 Nov; 53(5):443-64. PubMed ID: 17915289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic record of Mio-Pliocene red clay and Quaternary loess-paleosol sequence in the Chinese Loess Plateau.
    Song Y
    Data Brief; 2018 Feb; 16():411-417. PubMed ID: 29234700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillation of mineral compositions in Core SG-1b, western Qaidam Basin, NE Tibetan Plateau.
    Fang X; Li M; Wang Z; Wang J; Li J; Liu X; Zan J
    Sci Rep; 2016 Sep; 6():32848. PubMed ID: 27625177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into mineralogical distribution mechanism and environmental significance from geochemical behavior of sediments in the Yellow River Basin, China.
    Li W; Qian H; Xu P; Hou K; Qu W; Ren W; Chen Y
    Sci Total Environ; 2023 Dec; 903():166278. PubMed ID: 37582450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uplift-driven sediment redness decrease at ~16.5 Ma in the Yumen Basin along the northeastern Tibetan Plateau.
    Wang W; Zhang P; Zheng W; Zheng D; Liu C; Xu H; Zhang H; Yu J; Pang J
    Sci Rep; 2016 Jul; 6():29568. PubMed ID: 27411593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical weathering as a mechanism for the climatic control of bedrock river incision.
    Murphy BP; Johnson JP; Gasparini NM; Sklar LS
    Nature; 2016 Apr; 532(7598):223-7. PubMed ID: 27075099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A signature of transience in bedrock river incision rates over timescales of 10(4)-10(7) years.
    Finnegan NJ; Schumer R; Finnegan S
    Nature; 2014 Jan; 505(7483):391-4. PubMed ID: 24429636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China.
    Zhang B; He C; Burnham M; Zhang L
    Sci Total Environ; 2016 Jan; 539():436-449. PubMed ID: 26379259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Late Miocene episodic lakes in the arid Tarim Basin, western China.
    Liu W; Liu Z; An Z; Sun J; Chang H; Wang N; Dong J; Wang H
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16292-6. PubMed ID: 25368156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling.
    Willenbring JK; von Blanckenburg F
    Nature; 2010 May; 465(7295):211-4. PubMed ID: 20463736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Bufe A; Rugenstein JKC; Hovius N
    Science; 2024 Mar; 383(6687):1075-1080. PubMed ID: 38452079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Worldwide acceleration of mountain erosion under a cooling climate.
    Herman F; Seward D; Valla PG; Carter A; Kohn B; Willett SD; Ehlers TA
    Nature; 2013 Dec; 504(7480):423-6. PubMed ID: 24352288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical weathering rates and controlling mechanisms of glacial catchments within different climate regimes in the Tibetan Plateau.
    Guo X; Zhao Z; Liu W; Sun H; Xu Z
    PeerJ; 2023; 11():e15594. PubMed ID: 37426411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.