These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 2853974)

  • 41. Mutagenic investigation of conserved functional amino acids in Escherichia coli L-aspartase.
    Saribaş AS; Schindler JF; Viola RE
    J Biol Chem; 1994 Mar; 269(9):6313-9. PubMed ID: 8119980
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Factors affecting aspartase activity.
    DEPUE RH; MOAT AG
    J Bacteriol; 1961 Sep; 82(3):383-6. PubMed ID: 13722004
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetic mechanism and location of rate-determining steps for aspartase from Hafnia alvei.
    Nuiry II; Hermes JD; Weiss PM; Chen CY; Cook PF
    Biochemistry; 1984 Oct; 23(22):5168-75. PubMed ID: 6509019
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancement of catalytic activity by gene truncation: activation of L-aspartase from Escherichia coli.
    Jayasekera MM; Saribaş AS; Viola RE
    Biochem Biophys Res Commun; 1997 Sep; 238(2):411-4. PubMed ID: 9299522
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Specific inhibition of aspartase by S-2,3-dicarboxyaziridine.
    Higashi Y; Tokushige M; Umezawa H
    Biochem Int; 1988 Mar; 16(3):449-52. PubMed ID: 3289541
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors.
    Klumpp K; Hang JQ; Rajendran S; Yang Y; Derosier A; Wong Kai In P; Overton H; Parkes KE; Cammack N; Martin JA
    Nucleic Acids Res; 2003 Dec; 31(23):6852-9. PubMed ID: 14627818
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studies on aspartase. V. Denaturant-mediated reactivation of aspartase, which has been otherwise irreversibly inactivated by various causes.
    Tokushige M; Eguchi G
    Biochim Biophys Acta; 1978 Jan; 522(1):243-50. PubMed ID: 339956
    [No Abstract]   [Full Text] [Related]  

  • 48. Alteration of substrate specificity of aspartase by directed evolution.
    Asano Y; Kira I; Yokozeki K
    Biomol Eng; 2005 Jun; 22(1-3):95-101. PubMed ID: 15857789
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Induced rebuilding of aspartase conformation.
    Ma L; Cao SG; Yan BX; Zuo HT; Ding ZT; Meng QF; Cheng YH
    Ann N Y Acad Sci; 1992 Nov; 672():60-5. PubMed ID: 1476390
    [No Abstract]   [Full Text] [Related]  

  • 50. Assignment of catalytically essential cysteine residues in aspartase by selective chemical modification with N-(7-dimethylamino-4-methylcoumarynyl)maleimide.
    Ida N; Tokushige M
    J Biochem; 1985 Sep; 98(3):793-7. PubMed ID: 3910645
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solution structure and mechanism of the MutT pyrophosphohydrolase.
    Mildvan AS; Weber DJ; Abeygunawardana C
    Adv Enzymol Relat Areas Mol Biol; 1999; 73():183-207. PubMed ID: 10218109
    [TBL] [Abstract][Full Text] [Related]  

  • 52. E461H-beta-galactosidase (Escherichia coli): altered divalent metal specificity and slow but reversible metal inactivation.
    Martinez-Bilbao M; Gaunt MT; Huber RE
    Biochemistry; 1995 Oct; 34(41):13437-42. PubMed ID: 7577931
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies on aspartase. VI. Trypsin-mediated activation releasing carboxy-terminal peptides.
    Yumoto N; Tokushige M; Hayashi R
    Biochim Biophys Acta; 1980 Dec; 616(2):319-28. PubMed ID: 7011387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies on the regulatory functions of malic enzymes. III. Regulatory effects of L-aspartate, coenzyme A, and divalent metal ions on NAD-linked malic enzyme from Escherichia coli.
    Yamaguchi M; Tokushige M; Takeo K; Katsuki H
    J Biochem; 1974 Dec; 76(6):1259-68. PubMed ID: 4616960
    [No Abstract]   [Full Text] [Related]  

  • 56. Metal ions and phosphate binding in the H-N-H motif: crystal structures of the nuclease domain of ColE7/Im7 in complex with a phosphate ion and different divalent metal ions.
    Sui MJ; Tsai LC; Hsia KC; Doudeva LG; Ku WY; Han GW; Yuan HS
    Protein Sci; 2002 Dec; 11(12):2947-57. PubMed ID: 12441392
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mapping the aspartic acid binding site of Escherichia coli asparagine synthetase B using substrate analogs.
    Parr IB; Boehlein SK; Dribben AB; Schuster SM; Richards NG
    J Med Chem; 1996 Jun; 39(12):2367-78. PubMed ID: 8691431
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose 5-phosphate binding.
    Willemoës M; Nilsson D; Hove-Jensen B
    Biochemistry; 1996 Jun; 35(25):8181-6. PubMed ID: 8679571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.
    Wahba HM; Lecoq L; Stevenson M; Mansour A; Cappadocia L; Lafrance-Vanasse J; Wilkinson KJ; Sygusch J; Wilcox DE; Omichinski JG
    Biochemistry; 2016 Feb; 55(7):1070-81. PubMed ID: 26820485
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancement of the stability and activity of aspartase by random and site-directed mutagenesis.
    Zhang HY; Zhang J; Lin L; Du WY; Lu J
    Biochem Biophys Res Commun; 1993 Apr; 192(1):15-21. PubMed ID: 8476416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.