These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2853980)

  • 1. Sequential modification of membrane currents with classical conditioning.
    Collin C; Ikeno H; Harrigan JF; Lederhendler I; Alkon DL
    Biophys J; 1988 Nov; 54(5):955-60. PubMed ID: 2853980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serotonin modulation of Hermissenda type B photoreceptor light responses and ionic currents: implications for mechanisms underlying associative learning.
    Farley J; Wu R
    Brain Res Bull; 1989 Feb; 22(2):335-51. PubMed ID: 2468402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein phosphorylation and associative learning in Hermissenda.
    Neary JT; Alkon DL
    Acta Biochim Biophys Hung; 1986; 21(3):159-76. PubMed ID: 2432746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inositol trisphosphate regulation of photoreceptor membrane currents.
    Sakakibara M; Alkon DL; Neary JT; Heldman E; Gould R
    Biophys J; 1986 Nov; 50(5):797-803. PubMed ID: 3491632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Hermissenda K+ channels by cytoplasmic and membrane-associated C-kinase.
    Alkon DL; Naito S; Kubota M; Chen C; Bank B; Smallwood J; Gallant P; Rasmussen H
    J Neurochem; 1988 Sep; 51(3):903-17. PubMed ID: 2457656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Associative learning changes intrinsic to Hermissenda type A photoreceptors.
    Farley J; Richards WG; Grover LM
    Behav Neurosci; 1990 Feb; 104(1):135-52. PubMed ID: 2156519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro associative conditioning of Hermissenda: cumulative depolarization of type B photoreceptors and short-term associative behavioral changes.
    Farley J; Alkon DL
    J Neurophysiol; 1987 Jun; 57(6):1639-68. PubMed ID: 3598626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic basis of learning-correlated excitability changes in Hermissenda type A photoreceptors.
    Farley J; Han Y
    J Neurophysiol; 1997 Apr; 77(4):1861-88. PubMed ID: 9114242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outgrowths from Hermissenda photoreceptor somata are associated with activation of protein kinase C.
    Lederhendler II; Etcheberrigaray R; Yamoah EN; Matzel LD; Alkon DL
    Brain Res; 1990 Nov; 534(1-2):195-200. PubMed ID: 2073581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elementary properties of axonal calcium currents in type B photoreceptors in Hermissenda crassicornis.
    Tamse CT; Yamoah EN
    J Neurosci; 2002 Dec; 22(24):10533-8. PubMed ID: 12486145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential changes of potassium currents in Hermissenda type B photoreceptor during early stages of classical conditioning.
    Lederhendler II; Collin C; Alkon DL
    Neurosci Lett; 1990 Mar; 110(1-2):28-33. PubMed ID: 2325887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium waves and closure of potassium channels in response to GABA stimulation in Hermissenda type B photoreceptors.
    Blackwell KT
    J Neurophysiol; 2002 Feb; 87(2):776-92. PubMed ID: 11826046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of different types of inward rectifier currents confers specificity of light and dark responses in type A and B photoreceptors of Hermissenda.
    Yamoah EN; Matzel L; Crow T
    J Neurosci; 1998 Aug; 18(16):6501-11. PubMed ID: 9698338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of two voltage-dependent K+ currents mediates retention of a learned association.
    Alkon DL; Sakakibara M; Forman R; Harrigan J; Lederhendler I; Farley J
    Behav Neural Biol; 1985 Sep; 44(2):278-300. PubMed ID: 4062781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary changes of membrane currents during retention of associative learning.
    Alkon DL; Lederhendler I; Shoukimas JJ
    Science; 1982 Feb; 215(4533):693-5. PubMed ID: 7058334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PP1 inhibitors depolarize Hermissenda photoreceptors and reduce K+ currents.
    Huang H; Farley J
    J Neurophysiol; 2001 Sep; 86(3):1297-311. PubMed ID: 11535678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein kinase injection reduces voltage-dependent potassium currents.
    Alkon DL; Acosta-Urquidi J; Olds J; Kuzma G; Neary JT
    Science; 1983 Jan; 219(4582):303-6. PubMed ID: 6294830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of calcium-mediated inactivation of ionic currents by Ca2+/calmodulin-dependent protein kinase II.
    Sakakibara M; Alkon DL; DeLorenzo R; Goldenring JR; Neary JT; Heldman E
    Biophys J; 1986 Aug; 50(2):319-27. PubMed ID: 2427133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of neurochemical modulation in learning.
    Alkon DL; Sakakibara M; Naito S; Heldman E; Lederhendler I
    Neurosci Res; 1986 Sep; 3(6):487-97. PubMed ID: 3534645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early regulation of membrane excitability by ras oncogene proteins.
    Collin C; Papageorge AG; Sakakibara M; Huddie PL; Lowy DR; Alkon DL
    Biophys J; 1990 Sep; 58(3):785-90. PubMed ID: 2207264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.