These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28539851)

  • 1. The Influence of Particle Size Distribution and Shell Imperfections on the Plasmon Resonance of Au and Ag Nanoshells.
    Mann D; Nascimento-Duplat D; Keul H; Möller M; Verheijen M; Xu M; Urbach HP; Adam AJL; Buskens P
    Plasmonics; 2017; 12(3):929-945. PubMed ID: 28539851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells.
    Jain PK; El-Sayed MA
    Nano Lett; 2007 Sep; 7(9):2854-8. PubMed ID: 17676810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of AuAg/Ag/Au open nanoshells with optimized magnetic plasmon resonance and broken symmetry for enhancing second-harmonic generation.
    Zhou T; Ding SJ; Wu ZY; Yang DJ; Zhou LN; Zhao ZR; Ma L; Wang W; Ma S; Wang SM; Zou JN; Zhou L; Wang QQ
    Nanoscale; 2021 Dec; 13(46):19527-19536. PubMed ID: 34806104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon resonances of GZO core-Ag shell nanospheres, nanorods, and nanodisks for biosensing and biomedical applications in near-infrared biological windows I and II.
    Moustafa S; Almarashi JQM; Zayed MK; Almokhtar M; Rashad M; Fares H
    Phys Chem Chem Phys; 2024 Jun; 26(25):17817-17829. PubMed ID: 38884203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enlarge the biologic coating-induced absorbance enhancement of Au-Ag bimetallic nanoshells by tuning the metal composition.
    Zhu J; Li X; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():571-577. PubMed ID: 28881282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Au-Ag Nanoparticles from Galvanic Replacement Applied as Single-Particle SERS Probe for Quantitative Monitoring.
    Wang L; Patskovsky S; Gauthier-Soumis B; Meunier M
    Small; 2022 Jan; 18(1):e2105209. PubMed ID: 34761520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoshells on polystyrene cores for control of surface plasmon resonance.
    Shi W; Sahoo Y; Swihart MT; Prasad PN
    Langmuir; 2005 Feb; 21(4):1610-7. PubMed ID: 15697315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limitations on the optical tunability of small diameter gold nanoshells.
    Rasch MR; Sokolov KV; Korgel BA
    Langmuir; 2009 Oct; 25(19):11777-85. PubMed ID: 19711913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical properties of gold-silica-gold multilayer nanoshells.
    Hu Y; Fleming RC; Drezek RA
    Opt Express; 2008 Nov; 16(24):19579-91. PubMed ID: 19030045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance.
    Liu Y; Zhou J; Wang B; Jiang T; Ho HP; Petti L; Mormile P
    Phys Chem Chem Phys; 2015 Mar; 17(10):6819-26. PubMed ID: 25670345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties.
    Ma Y; Li W; Cho EC; Li Z; Yu T; Zeng J; Xie Z; Xia Y
    ACS Nano; 2010 Nov; 4(11):6725-34. PubMed ID: 20964400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK; Lee KS; El-Sayed IH; El-Sayed MA
    J Phys Chem B; 2006 Apr; 110(14):7238-48. PubMed ID: 16599493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rational design of multimodal asymmetric nanoshells as efficient tunable absorbers within the biological optical window.
    Souri S; Hadilou N; Navid HA; Sadighi Bonabi R; Anvari A
    Sci Rep; 2021 Jul; 11(1):15115. PubMed ID: 34302000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells.
    Goodman AM; Cao Y; Urban C; Neumann O; Ayala-Orozco C; Knight MW; Joshi A; Nordlander P; Halas NJ
    ACS Nano; 2014 Apr; 8(4):3222-31. PubMed ID: 24547810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanosphere-in-a-nanoegg: damping the high-order modes induced by symmetry breaking.
    Qian J; Sun YD; Li YD; Xu JJ; Sun Q
    Nanoscale Res Lett; 2015; 10():17. PubMed ID: 25852315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy.
    Wu C; Yu C; Chu M
    Int J Nanomedicine; 2011; 6():807-13. PubMed ID: 21589648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of plasmon-exciton hybrid nanoshells for sensing application.
    Firoozi A; Amphawan A; Khordad R; Mohammadi A; Jalali T; Edet CO; Ali N
    Sci Rep; 2023 Jul; 13(1):11325. PubMed ID: 37443203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-shell Ag-Au nanoparticles from replacement reaction in organic medium.
    Yang J; Lee JY; Too HP
    J Phys Chem B; 2005 Oct; 109(41):19208-12. PubMed ID: 16853479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.