BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 28539887)

  • 1. Biomaterials for Local, Controlled Drug Delivery to the Injured Spinal Cord.
    Ziemba AM; Gilbert RJ
    Front Pharmacol; 2017; 8():245. PubMed ID: 28539887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions.
    Walsh CM; Wychowaniec JK; Brougham DF; Dooley D
    Pharmacol Ther; 2022 Jun; 234():108043. PubMed ID: 34813862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lentiviral Vectors Delivered with Biomaterials as Therapeutics for Spinal Cord Injury.
    Shortiss C; Howard L; McMahon SS
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury.
    Zhao YZ; Jiang X; Xiao J; Lin Q; Yu WZ; Tian FR; Mao KL; Yang W; Wong HL; Lu CT
    Acta Biomater; 2016 Jan; 29():71-80. PubMed ID: 26472614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regenerative rehabilitation with conductive biomaterials for spinal cord injury.
    Kiyotake EA; Martin MD; Detamore MS
    Acta Biomater; 2022 Feb; 139():43-64. PubMed ID: 33326879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local BDNF Delivery to the Injured Cervical Spinal Cord using an Engineered Hydrogel Enhances Diaphragmatic Respiratory Function.
    Ghosh B; Wang Z; Nong J; Urban MW; Zhang Z; Trovillion VA; Wright MC; Zhong Y; Lepore AC
    J Neurosci; 2018 Jun; 38(26):5982-5995. PubMed ID: 29891731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable Hydrogels for Spinal Cord Repair: A Focus on Swelling and Intraspinal Pressure.
    Khaing ZZ; Ehsanipour A; Hofstetter CP; Seidlits SK
    Cells Tissues Organs; 2016; 202(1-2):67-84. PubMed ID: 27701162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments.
    Saremi J; Mahmoodi N; Rasouli M; Ranjbar FE; Mazaheri EL; Akbari M; Hasanzadeh E; Azami M
    Biomed Pharmacother; 2022 Feb; 146():112529. PubMed ID: 34906773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Animal Models for Treating Spinal Cord Injury Using Biomaterials-Based Tissue Engineering Strategies.
    Li JJ; Liu H; Zhu Y; Yan L; Liu R; Wang G; Wang B; Zhao B
    Tissue Eng Part B Rev; 2022 Feb; 28(1):79-100. PubMed ID: 33267667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury.
    Hong JY; Seo Y; Davaa G; Kim HW; Kim SH; Hyun JK
    Acta Biomater; 2020 Jan; 101():357-371. PubMed ID: 31711898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury.
    Lima R; Monteiro A; Salgado AJ; Monteiro S; Silva NA
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomaterial scaffolds used for the regeneration of spinal cord injury (SCI).
    Kim M; Park SR; Choi BH
    Histol Histopathol; 2014 Nov; 29(11):1395-408. PubMed ID: 24831814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun Fibers for Drug Delivery after Spinal Cord Injury and the Effects of Drug Incorporation on Fiber Properties.
    Johnson CD; D'Amato AR; Gilbert RJ
    Cells Tissues Organs; 2016; 202(1-2):116-135. PubMed ID: 27701153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds.
    Katoh H; Yokota K; Fehlings MG
    Front Cell Neurosci; 2019; 13():248. PubMed ID: 31244609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination therapy of stem cell derived neural progenitors and drug delivery of anti-inhibitory molecules for spinal cord injury.
    Wilems TS; Pardieck J; Iyer N; Sakiyama-Elbert SE
    Acta Biomater; 2015 Dec; 28():23-32. PubMed ID: 26384702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomaterial-targeted precision nanoparticle delivery to the injured spinal cord.
    Ciciriello AJ; Surnar B; Medy GD; Su X; Dhar S; Dumont CM
    Acta Biomater; 2022 Oct; 152():532-545. PubMed ID: 36087868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanowired drug delivery to enhance neuroprotection in spinal cord injury.
    Tian ZR; Sharma A; Nozari A; Subramaniam R; Lundstedt T; Sharma HS
    CNS Neurol Disord Drug Targets; 2012 Feb; 11(1):86-95. PubMed ID: 22385571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial Therapies After Spinal Cord Injury: How Can Biomaterials Help?
    Führmann T; Anandakumaran PN; Shoichet MS
    Adv Healthc Mater; 2017 May; 6(10):. PubMed ID: 28247563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stem cell-based combinatorial therapies for spinal cord injury: a narrative review of current research and future directions.
    Aderinto N; Abdulbasit MO; Olatunji D
    Ann Med Surg (Lond); 2023 Aug; 85(8):3943-3954. PubMed ID: 37554849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.