BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28539890)

  • 1. Insecticidal Effects of Hemocoelic Delivery of
    Ningshen TJ; Chauhan VK; Dhania NK; Dutta-Gupta A
    Front Physiol; 2017; 8():289. PubMed ID: 28539890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interpretation of a non-gut hemocoelic tissue aminopeptidase N (APN) in a lepidopteran insect pest Achaea janata.
    Ningshen TJ; Aparoy P; Ventaku VR; Dutta-Gupta A
    PLoS One; 2013; 8(11):e79468. PubMed ID: 24244508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and regulation of Bacillus thuringiensis Cry toxin binding aminopeptidases N (APNs) from non-gut visceral tissues, Malpighian tubule and salivary gland: Comparison with midgut-specific APN in the moth Achaea janata.
    Ningshen TJ; Chaitanya RK; Hari PP; Vimala Devi PS; Dutta-Gupta A
    Comp Biochem Physiol B Biochem Mol Biol; 2013; 166(3-4):194-202. PubMed ID: 24045122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-Seq analysis and de novo transcriptome assembly of Cry toxin susceptible and tolerant Achaea janata larvae.
    Dhania NK; Chauhan VK; Chaitanya RK; Dutta-Gupta A
    Sci Data; 2019 Aug; 6(1):159. PubMed ID: 31439842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Midgut aminopeptidase N expression profile in castor semilooper (
    Chauhan VK; Dhania NK; Lokya V; Bhuvanachandra B; Padmasree K; Dutta-Gupta A
    J Biosci; 2021; 46():. PubMed ID: 33753580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Larval Mid-Gut Responses to Sub-Lethal Dose of Cry Toxin in Lepidopteran Pest
    Chauhan VK; Dhania NK; Chaitanya RK; Senthilkumaran B; Dutta-Gupta A
    Front Physiol; 2017; 8():662. PubMed ID: 28928675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel aminopeptidase in the fat body of the moth Achaea janata as a receptor for Bacillus thuringiensis Cry toxins and its comparison with midgut aminopeptidase.
    Budatha M; Meur G; Dutta-Gupta A
    Biochem J; 2007 Jul; 405(2):287-97. PubMed ID: 17402938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insect Hsp90 Chaperone Assists Bacillus thuringiensis Cry Toxicity by Enhancing Protoxin Binding to the Receptor and by Protecting Protoxin from Gut Protease Degradation.
    García-Gómez BI; Cano SN; Zagal EE; Dantán-Gonzalez E; Bravo A; Soberón M
    mBio; 2019 Nov; 10(6):. PubMed ID: 31772047
    [No Abstract]   [Full Text] [Related]  

  • 9. Use of Bacillus thuringiensis toxins for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae).
    Ibargutxi MA; Estela A; Ferré J; Caballero P
    Appl Environ Microbiol; 2006 Jan; 72(1):437-42. PubMed ID: 16391075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Midgut de novo transcriptome analysis and gene expression profiling of Achaea janata larvae exposed with Bacillus thuringiensis (Bt)-based biopesticide formulation.
    Dhania NK; Chauhan VK; Chaitanya RK; Dutta-Gupta A
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():81-90. PubMed ID: 30802789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Ephestia kuehniella stage larvae on the potency of Bacillus thuringiensis Cry1Aa delta-endotoxin.
    Abdelmalek N; Sellami S; Kallassy-Awad M; Tounsi MF; Mebarkia A; Tounsi S; Rouis S
    Pestic Biochem Physiol; 2017 Apr; 137():91-97. PubMed ID: 28364809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway.
    Portugal L; Muñóz-Garay C; Martínez de Castro DL; Soberón M; Bravo A
    Insect Biochem Mol Biol; 2017 Jan; 80():21-31. PubMed ID: 27867074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis.
    Rodrigo-Simón A; de Maagd RA; Avilla C; Bakker PL; Molthoff J; González-Zamora JE; Ferré J
    Appl Environ Microbiol; 2006 Feb; 72(2):1595-603. PubMed ID: 16461715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae.
    Zhang Q; Hua G; Adang MJ
    Insect Sci; 2017 Oct; 24(5):714-729. PubMed ID: 27628909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility.
    Wei W; Pan S; Ma Y; Xiao Y; Yang Y; He S; Bravo A; Soberón M; Liu K
    Insect Biochem Mol Biol; 2020 Mar; 118():103306. PubMed ID: 31843687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility and selectivity of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) to different cry toxins.
    Yang Y; Xu H; Zheng X; Lu Z
    J Econ Entomol; 2012 Dec; 105(6):2122-8. PubMed ID: 23356078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins mixed with Xenorhabdus nematophila.
    BenFarhat D; Dammak M; Khedher SB; Mahfoudh S; Kammoun S; Tounsi S
    J Invertebr Pathol; 2013 Sep; 114(1):71-5. PubMed ID: 23747825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive analysis of Cry1Ac protoxin activation mediated by midgut proteases in susceptible and resistant Plutella xylostella (L.).
    Guo Z; Gong L; Kang S; Zhou J; Sun D; Qin J; Guo L; Zhu L; Bai Y; Bravo A; Soberón M; Zhang Y
    Pestic Biochem Physiol; 2020 Feb; 163():23-30. PubMed ID: 31973862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell lines as models for the study of Cry toxins from Bacillus thuringiensis.
    Soberón M; Portugal L; Garcia-Gómez BI; Sánchez J; Onofre J; Gómez I; Pacheco S; Bravo A
    Insect Biochem Mol Biol; 2018 Feb; 93():66-78. PubMed ID: 29269111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tobacco plants expressing the Cry1AbMod toxin suppress tolerance to Cry1Ab toxin of Manduca sexta cadherin-silenced larvae.
    Porta H; Jiménez G; Cordoba E; León P; Soberón M; Bravo A
    Insect Biochem Mol Biol; 2011 Jul; 41(7):513-9. PubMed ID: 21621616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.