These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28540523)

  • 21. Is RK-682 a promiscuous enzyme inhibitor? Synthesis and in vitro evaluation of protein tyrosine phosphatase inhibition of racemic RK-682 and analogues.
    Carneiro VM; Trivella DB; Scorsato V; Beraldo VL; Dias MP; Sobreira TJ; Aparicio R; Pilli RA
    Eur J Med Chem; 2015 Jun; 97():42-54. PubMed ID: 25938987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for inhibition of protein tyrosine phosphatases by Keggin compounds phosphomolybdate and phosphotungstate.
    Heo YS; Ryu JM; Park SM; Park JH; Lee HC; Hwang KY; Kim J
    Exp Mol Med; 2002 Jul; 34(3):211-23. PubMed ID: 12216113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competition of zinc(II) with cadmium(II) or mercury(II) in binding to a 12-mer peptide.
    Jancsó A; Gyurcsik B; Mesterházy E; Berkecz R
    J Inorg Biochem; 2013 Sep; 126():96-103. PubMed ID: 23796441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of metal cations and oxyanions in the regulation of protein arginine phosphatase activity of YwlE from Bacillus subtilis.
    Huang B; Zhao Z; Huang C; Zhao M; Zhang Y; Liu Y; Liao X; Huang S; Zhao Y
    Biochim Biophys Acta Gen Subj; 2020 Nov; 1864(11):129698. PubMed ID: 32730774
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an automated protein-tyrosine phosphatase 1B inhibition assay and the screening of putative insulin-enhancing vanadium(IV) and zinc(II) complexes.
    Seale AP; de Jesus LA; Kim SY; Choi YH; Lim HB; Hwang CS; Kim YS
    Biotechnol Lett; 2005 Feb; 27(4):221-5. PubMed ID: 15742140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Divalent metal ions control activity and inhibition of protein kinases.
    Knape MJ; Ballez M; Burghardt NC; Zimmermann B; Bertinetti D; Kornev AP; Herberg FW
    Metallomics; 2017 Nov; 9(11):1576-1584. PubMed ID: 29043344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potent inhibition of protein tyrosine phosphatases by quinquedentate binuclear copper complexes: synthesis, characterization and biological activities.
    Wang Q; Zhu M; Lu L; Yuan C; Xing S; Fu X
    Dalton Trans; 2011 Dec; 40(48):12926-34. PubMed ID: 22027948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A minimalist chemical model of matrix metalloproteinases--can small peptides mimic the more rigid metal binding sites of proteins?
    Árus D; Nagy NV; Dancs Á; Jancsó A; Berkecz R; Gajda T
    J Inorg Biochem; 2013 Sep; 126():61-9. PubMed ID: 23787141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-state dynamics of zinc(II) complexes yielding significant antidiabetic targets.
    Parvaiz N; Abro A; Azam SS
    J Mol Graph Model; 2024 Mar; 127():108665. PubMed ID: 38029632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibitory zinc sites in enzymes.
    Maret W
    Biometals; 2013 Apr; 26(2):197-204. PubMed ID: 23456096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic structure of the metal center in the Cd(2+), Zn(2+), and Cu(2+) substituted forms of KDO8P synthase: implications for catalysis.
    Kona F; Tao P; Martin P; Xu X; Gatti DL
    Biochemistry; 2009 Apr; 48(16):3610-30. PubMed ID: 19228070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV).
    Li M; Ding W; Baruah B; Crans DC; Wang R
    J Inorg Biochem; 2008 Oct; 102(10):1846-53. PubMed ID: 18728000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of active compounds from Gracilaria lemaneiformis inhibiting the protein tyrosine phosphatase 1B activity.
    Guo X; Gu D; Wang M; Huang Y; Li H; Dong Y; Tian J; Wang Y; Yang Y
    Food Funct; 2017 Sep; 8(9):3271-3275. PubMed ID: 28829084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibitors directed towards the binuclear metal center of phosphotriesterase.
    Hong SB; Raushel FM
    J Enzyme Inhib; 1997 Aug; 12(3):191-203. PubMed ID: 9314115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of rat acid phosphatase complexed with the transition-state analogs vanadate and molybdate. Implications for the reaction mechanism.
    Lindqvist Y; Schneider G; Vihko P
    Eur J Biochem; 1994 Apr; 221(1):139-42. PubMed ID: 8168503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uncovering the Molecular Interactions in the Catalytic Loop That Modulate the Conformational Dynamics in Protein Tyrosine Phosphatase 1B.
    Cui DS; Lipchock JM; Brookner D; Loria JP
    J Am Chem Soc; 2019 Aug; 141(32):12634-12647. PubMed ID: 31339043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal binding to ligands: cadmium complexes with glutathione revisited.
    Leverrier P; Montigny C; Garrigos M; Champeil P
    Anal Biochem; 2007 Dec; 371(2):215-28. PubMed ID: 17761134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulation of the interaction between protein tyrosine phosphatase 1B and aryl diketoacid derivatives.
    Wang Q; Gao J; Liu Y; Liu C
    J Mol Graph Model; 2012 Sep; 38():186-93. PubMed ID: 23085163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NOTA Complexes with Copper(II) and Divalent Metal Ions: Kinetic and Thermodynamic Studies.
    Kubíček V; Böhmová Z; Ševčíková R; Vaněk J; Lubal P; Poláková Z; Michalicová R; Kotek J; Hermann P
    Inorg Chem; 2018 Mar; 57(6):3061-3072. PubMed ID: 29488748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Divalent copper ion bound amyloid-β(40) and amyloid-β(42) alloforms are less preferred than divalent zinc ion bound amyloid-β(40) and amyloid-β(42) alloforms.
    Coskuner O
    J Biol Inorg Chem; 2016 Dec; 21(8):957-973. PubMed ID: 27659954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.