These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28540718)

  • 1. Oriented Built-in Electric Field Introduced by Surface Gradient Diffusion Doping for Enhanced Photocatalytic H
    Huang H; Dai B; Wang W; Lu C; Kou J; Ni Y; Wang L; Xu Z
    Nano Lett; 2017 Jun; 17(6):3803-3808. PubMed ID: 28540718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional Charge Pumping from Photoactive P-doped CdS to Catalytic Active Ni
    Chen A; Yang X; Shen L; Zheng Y; Yang MQ
    Small; 2024 Jul; 20(28):e2309805. PubMed ID: 38287735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An oriented built-in electric field induced by cobalt surface gradient diffused doping in MgIn
    Zeng C; Zeng Q; Dai C; Hu Y
    Dalton Trans; 2020 Jul; 49(27):9213-9217. PubMed ID: 32602481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step phosphorization preparation of gradient-P-doped CdS/CoP hybrid nanorods having multiple channel charge separation for photocatalytic reduction of water.
    Guo C; Li L; Chen F; Ning J; Zhong Y; Hu Y
    J Colloid Interface Sci; 2021 Aug; 596():431-441. PubMed ID: 33848747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting CdS Photocatalytic Activity for Hydrogen Evolution in Formic Acid Solution by P Doping and MoS
    Liu J; Huang H; Ge C; Wang Z; Zhou X; Fang Y
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WS
    Zou Y; Shi JW; Ma D; Fan Z; Cheng L; Sun D; Wang Z; Niu C
    ChemSusChem; 2018 Apr; 11(7):1187-1197. PubMed ID: 29400001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast charge separation in a WC@C/CdS heterojunction enables efficient visible-light-driven hydrogen generation.
    Chen L; Chen F; Ying S; Liang R; Yan G; Wang X; Xia Y
    Dalton Trans; 2023 Jan; 52(2):290-296. PubMed ID: 36484709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially ordered NiOOH-ZnS/CdS heterostructures with an efficient photo-carrier transmission channel for markedly improved H
    Xin X; Qiu Y; Jiang C; Li Y; Wang H; Xu J; Lin H; Wang L; Turkevych V
    Dalton Trans; 2024 Apr; 53(16):7131-7141. PubMed ID: 38568717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a transition-metal sulfide heterojunction photocatalyst driven by a built-in electric field for efficient hydrogen evolution under visible light.
    Zhang W; Xu Q; Tang X; Jiang H; Shi J; Fominski V; Bai Y; Chen P; Zou J
    J Colloid Interface Sci; 2023 Nov; 649():325-333. PubMed ID: 37352563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox Dual-Cocatalyst-Modified CdS Double-Heterojunction Photocatalysts for Efficient Hydrogen Production.
    Zhao Y; Lu Y; Chen L; Wei X; Zhu J; Zheng Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46073-46083. PubMed ID: 32929955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the Photocatalytic Hydrogen Generation Activity of CdS Nanorods by Introducing Interfacial and Polarization Electric Fields.
    Qi Z; Chen J; Li Q; Wang N; Carabineiro SAC; Lv K
    Small; 2023 Nov; 19(46):e2303318. PubMed ID: 37475483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal synthesis of CdS nanorods anchored on α-Fe
    Lei R; Ni H; Chen R; Gu H; Zhang B; Zhan W
    J Colloid Interface Sci; 2018 Mar; 514():496-506. PubMed ID: 29289732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photocatalytic H
    Irfan RM; Tahir MH; Khan SA; Shaheen MA; Ahmed G; Iqbal S
    J Colloid Interface Sci; 2019 Dec; 557():1-9. PubMed ID: 31505332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective Charge Carrier Utilization in Photocatalytic Conversions.
    Zhang P; Wang T; Chang X; Gong J
    Acc Chem Res; 2016 May; 49(5):911-21. PubMed ID: 27075166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble metal-free 0D-1D NiS
    Meng S; Cui Y; Wang H; Zheng X; Fu X; Chen S
    Dalton Trans; 2018 Sep; 47(36):12671-12683. PubMed ID: 30151533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Photocatalytic H
    Xiang X; Zhu B; Cheng B; Yu J; Lv H
    Small; 2020 Jul; 16(26):e2001024. PubMed ID: 32484310
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Zhou X; Fang Y; Cai X; Zhang S; Yang S; Wang H; Zhong X; Fang Y
    ACS Appl Mater Interfaces; 2020 May; 12(18):20579-20588. PubMed ID: 32272011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphous tungsten phosphosulphide-modified CdS nanorods as a highly efficient electron-cocatalyst for enhanced photocatalytic hydrogen production.
    Jian Q; Hao X; Jin Z; Ma Q
    Phys Chem Chem Phys; 2020 Jan; 22(4):1932-1943. PubMed ID: 31912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting.
    Zhang H; Li D; Byun WJ; Wang X; Shin TJ; Jeong HY; Han H; Li C; Lee JS
    Nat Commun; 2020 Sep; 11(1):4622. PubMed ID: 32934221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.