BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 2854106)

  • 21. Inhibition of Na+/K(+)-ATPase by phenoxyl radicals of etoposide (VP-16): role of sulfhydryls oxidation.
    Kurella EG; Osipov AN; Goldman R; Boldyrev AA; Kagan VE
    Biochim Biophys Acta; 1995 Nov; 1232(1-2):52-8. PubMed ID: 7495837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones.
    Cassagnes LE; Perio P; Ferry G; Moulharat N; Antoine M; Gayon R; Boutin JA; Nepveu F; Reybier K
    Free Radic Biol Med; 2015 Dec; 89():126-34. PubMed ID: 26386287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An electron spin resonance study of free radicals from catechol estrogens.
    Kalyanaraman B; Hintz P; Sealy RC
    Fed Proc; 1986 Sep; 45(10):2477-84. PubMed ID: 3017766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ESR identification of free radicals formed from the oxidation of catechol estrogens by Cu2+.
    Seacat AM; Kuppusamy P; Zweier JL; Yager JD
    Arch Biochem Biophys; 1997 Nov; 347(1):45-52. PubMed ID: 9344463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions of the antitumor drug, etoposide, with reduced thiols in vitro and in vivo.
    Katki AG; Kalyanaraman B; Sinha BK
    Chem Biol Interact; 1987; 62(3):237-47. PubMed ID: 3040275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free radical formation and DNA strand breakage during metabolism of diaziquone by NAD(P)H quinone-acceptor oxidoreductase (DT-diaphorase) and NADPH cytochrome c reductase.
    Fisher GR; Gutierrez PL
    Free Radic Biol Med; 1991; 11(6):597-607. PubMed ID: 1663902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidation of the substituted catechols dihydroxyphenylalanine methyl ester and trihydroxyphenylalanine by lactoperoxidase and its compounds.
    Metodiewa D; Reszka K; Dunford HB
    Arch Biochem Biophys; 1989 Nov; 274(2):601-8. PubMed ID: 2552928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation.
    Krol ES; Bolton JL
    Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosensitization by anticancer agents--10. ortho-semiquinone and superoxide radicals produced during anthrapyrazole-sensitized oxidation of catechols.
    Reszka K; Lown JW; Chignell CF
    Photochem Photobiol; 1992 Mar; 55(3):359-66. PubMed ID: 1313979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron-dependent hydroxyl radical formation and DNA damage from a novel metabolite of the clinically active antitumor drug VP-16.
    Sinha BK; Eliot HM; Kalayanaraman B
    FEBS Lett; 1988 Jan; 227(2):240-4. PubMed ID: 2828121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement by catechols of hydroxyl-radical formation in the presence of ferric ions and hydrogen peroxide.
    Iwahashi H; Morishita H; Ishii T; Sugata R; Kido R
    J Biochem; 1989 Mar; 105(3):429-34. PubMed ID: 2543661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenoxyl radicals of etoposide (VP-16) can directly oxidize intracellular thiols: protective versus damaging effects of phenolic antioxidants.
    Tyurina YY; Tyurin VA; Yalowich JC; Quinn PJ; Claycamp HG; Schor NF; Pitt BR; Kagan VE
    Toxicol Appl Pharmacol; 1995 Apr; 131(2):277-88. PubMed ID: 7716769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peroxidase-catalyzed metabolism of etoposide (VP-16-213) and covalent binding of reactive intermediates to cellular macromolecules.
    Haim N; Nemec J; Roman J; Sinha BK
    Cancer Res; 1987 Nov; 47(22):5835-40. PubMed ID: 3117357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tyrosinase-induced free radical formation from VP-16,213: relationship to cytotoxicity.
    Usui N; Sinha BK
    Free Radic Res Commun; 1990; 10(4-5):287-93. PubMed ID: 1963166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals,
    Flowers L; Ohnishi ST; Penning TM
    Biochemistry; 1997 Jul; 36(28):8640-8. PubMed ID: 9214311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First electron spin resonance evidence for the production of semiquinone and oxygen free radicals from orellanine, a mushroom nephrotoxin.
    Richard JM; Cantin-Esnault D; Jeunet A
    Free Radic Biol Med; 1995 Oct; 19(4):417-29. PubMed ID: 7590391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The first purification and unequivocal characterization of the radical form of the carbon-centered quinone ketoxy radical adduct.
    Huang CH; Shan GQ; Mao L; Kalyanaraman B; Qin H; Ren FR; Zhu BZ
    Chem Commun (Camb); 2013 Jul; 49(57):6436-8. PubMed ID: 23752136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free radical and drug oxidation products in an intensive care unit sedative: propofol with sulfite.
    Baker MT; Gregerson MS; Martin SM; Buettner GR
    Crit Care Med; 2003 Mar; 31(3):787-92. PubMed ID: 12626985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of metabolism and oxidation-reduction cycling in the cytotoxicity of antitumor quinoneimines and quinonediimines.
    Powis G; Hodnett EM; Santone KS; See KL; Melder DC
    Cancer Res; 1987 May; 47(9):2363-70. PubMed ID: 3032421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Etoposide catechol is an oxidizable topoisomerase II poison.
    Jacob DA; Gibson EG; Mercer SL; Deweese JE
    Chem Res Toxicol; 2013 Aug; 26(8):1156-8. PubMed ID: 23863110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.