These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28541187)

  • 1. Enhancement of Group Perception via a Collaborative Brain-Computer Interface.
    Valeriani D; Poli R; Cinel C
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1238-1248. PubMed ID: 28541187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collaborative Brain-Computer Interfaces to Enhance Group Decisions in an Outpost Surveillance Task.
    Bhattacharyya S; Valeriani D; Cinel C; Citi L; Poli R
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3099-3102. PubMed ID: 31946543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anytime collaborative brain-computer interfaces for enhancing perceptual group decision-making.
    Bhattacharyya S; Valeriani D; Cinel C; Citi L; Poli R
    Sci Rep; 2021 Aug; 11(1):17008. PubMed ID: 34417494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Collaborative Brain-Computer Interface Framework for Enhancing Group Detection Performance of Dynamic Visual Targets.
    Song X; Zeng Y; Tong L; Shu J; Yang Q; Kou J; Sun M; Yan B
    Comput Intell Neurosci; 2022; 2022():4752450. PubMed ID: 35087580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-Computer interfaces for communication: preferences of individuals with locked-in syndrome, caregivers and researchers.
    Branco MP; Pels EGM; Nijboer F; Ramsey NF; Vansteensel MJ
    Disabil Rehabil Assist Technol; 2023 Aug; 18(6):963-973. PubMed ID: 34383613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group Augmentation in Realistic Visual-Search Decisions via a Hybrid Brain-Computer Interface.
    Valeriani D; Cinel C; Poli R
    Sci Rep; 2017 Aug; 7(1):7772. PubMed ID: 28798411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-Computer Interfaces for Communication: Preferences of Individuals With Locked-in Syndrome.
    Branco MP; Pels EGM; Sars RH; Aarnoutse EJ; Ramsey NF; Vansteensel MJ; Nijboer F
    Neurorehabil Neural Repair; 2021 Mar; 35(3):267-279. PubMed ID: 33530868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison study of visually stimulated brain-computer and eye-tracking interfaces.
    Suefusa K; Tanaka T
    J Neural Eng; 2017 Jun; 14(3):036009. PubMed ID: 28198356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid EEG and eye movement interface to multi-directional target selection.
    Kim M; Chae Y; Jo S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():763-6. PubMed ID: 24109799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research progress and prospect of collaborative brain-computer interface for group brain collaboration].
    Zhang L; Chen X; Chen L; Gu B; Wang Z; Ming D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):409-416. PubMed ID: 34180185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-fTCD hybrid brain-computer interface using template matching and wavelet decomposition.
    Khalaf A; Sejdic E; Akcakaya M
    J Neural Eng; 2019 Jun; 16(3):036014. PubMed ID: 30818297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active visual search in non-stationary scenes: coping with temporal variability and uncertainty.
    Ušćumlić M; Blankertz B
    J Neural Eng; 2016 Feb; 13(1):016015. PubMed ID: 26726921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attentional load classification in multiple object tracking task using optimized support vector machine classifier: a step towards cognitive brain-computer interface.
    Sweeti
    J Med Eng Technol; 2022 Jan; 46(1):69-77. PubMed ID: 34825850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P300-based brain computer interface: reliability and performance in healthy and paralysed participants.
    Piccione F; Giorgi F; Tonin P; Priftis K; Giove S; Silvoni S; Palmas G; Beverina F
    Clin Neurophysiol; 2006 Mar; 117(3):531-7. PubMed ID: 16458069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain activity-based image classification from rapid serial visual presentation.
    Bigdely-Shamlo N; Vankov A; Ramirez RR; Makeig S
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):432-41. PubMed ID: 18990647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-channel EEG signal feature extraction and pattern recognition on horizontal mental imagination task of 1-D cursor movement for brain computer interface.
    Serdar Bascil M; Tesneli AY; Temurtas F
    Australas Phys Eng Sci Med; 2015 Jun; 38(2):229-39. PubMed ID: 25982878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.