These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28541189)

  • 1. Deep-Reaching Hydrodynamic Flow Confinement: Micrometer-Scale Liquid Localization for Open Substrates With Topographical Variations.
    Oskooei A; Kaigala GV
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1261-1269. PubMed ID: 28541189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Aperture Microfluidic Probes as Flow Dipole: Theory and Applications.
    Safavieh M; Qasaimeh MA; Vakil A; Juncker D; Gervais T
    Sci Rep; 2015 Jul; 5():11943. PubMed ID: 26169160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A vertical microfluidic probe.
    Kaigala GV; Lovchik RD; Drechsler U; Delamarche E
    Langmuir; 2011 May; 27(9):5686-93. PubMed ID: 21476506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centimeter-Scale Surface Interactions Using Hydrodynamic Flow Confinements.
    Taylor DP; Zeaf I; Lovchik RD; Kaigala GV
    Langmuir; 2016 Oct; 32(41):10537-10544. PubMed ID: 27653338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical hydrodynamic flow confinement: efficient use and retrieval of chemicals for microscale chemistry on surfaces.
    Autebert J; Kashyap A; Lovchik RD; Delamarche E; Kaigala GV
    Langmuir; 2014 Apr; 30(12):3640-5. PubMed ID: 24625080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics in the "open space" for performing localized chemistry on biological interfaces.
    Kaigala GV; Lovchik RD; Delamarche E
    Angew Chem Int Ed Engl; 2012 Nov; 51(45):11224-40. PubMed ID: 23111955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of single polymers in a stagnation flow induced by electrokinetics.
    Juang YJ; Wang S; Hu X; Lee LJ
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):268105. PubMed ID: 15698027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamics of isotropic and liquid crystalline active polymer solutions.
    Ahmadi A; Marchetti MC; Liverpool TB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061913. PubMed ID: 17280102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The microfluidic probe: operation and use for localized surface processing.
    Perrault CM; Qasaimeh MA; Juncker D
    J Vis Exp; 2009 Jun; (28):. PubMed ID: 19578328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic analysis of microfluidic probe design and operation.
    Gervais T; Safavieh M; Qasaimeh MA; Juncker D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1567-70. PubMed ID: 25570270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of acoustic radiation forces to position particles within fluid droplets.
    Oberti S; Neild A; Quach R; Dual J
    Ultrasonics; 2009 Jan; 49(1):47-52. PubMed ID: 18590923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hydrodynamic retardation and interparticle interactions on the self-assembly in a drying droplet containing suspended solid particles.
    Lebovka NI; Khrapatiy S; Melnyk R; Vygornitskii M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052307. PubMed ID: 25353800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic breakups of confined droplets against a linear obstacle: The importance of the viscosity contrast.
    Salkin L; Courbin L; Panizza P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036317. PubMed ID: 23031023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061603. PubMed ID: 23005105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective hydrodynamic boundary conditions for microtextured surfaces.
    Mongruel A; Chastel T; Asmolov ES; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):011002. PubMed ID: 23410274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convection-Enhanced Biopatterning with Recirculation of Hydrodynamically Confined Nanoliter Volumes of Reagents.
    Autebert J; Cors JF; Taylor DP; Kaigala GV
    Anal Chem; 2016 Mar; 88(6):3235-42. PubMed ID: 26837532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered Models of Confined Cell Migration.
    Paul CD; Hung WC; Wirtz D; Konstantopoulos K
    Annu Rev Biomed Eng; 2016 Jul; 18():159-80. PubMed ID: 27420571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscale hydrodynamic confinements: shaping liquids across length scales as a toolbox in life sciences.
    Taylor DP; Mathur P; Renaud P; Kaigala GV
    Lab Chip; 2022 Apr; 22(8):1415-1437. PubMed ID: 35348555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entropic trap, surface-mediated combing, and assembly of DNA molecules within submicrometer interfacial confinement.
    Hsieh SF; Wei HH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021901. PubMed ID: 19391772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric and material determinants of patterning efficiency by dielectrophoresis.
    Albrecht DR; Sah RL; Bhatia SN
    Biophys J; 2004 Oct; 87(4):2131-47. PubMed ID: 15454417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.